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Abstract

Copy number alteration (CNA) profiling of human tumors has
revealed recurrent patterns of DNA amplifications and deletions
across diverse cancer types. These patterns are suggestive of
conserved selection pressures during tumor evolution but cannot
be fully explained by known oncogenes and tumor suppressor
genes. Using a pan-cancer analysis of CNA data from patient
tumors and experimental systems, here we show that principal
component analysis-defined CNA signatures are predictive of
glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG)
avidity of patient tumors, and increased proliferation. The primary
CNA signature is enriched for p53 mutations and is associated with
glycolysis through coordinate amplification of glycolytic genes and
other cancer-linked metabolic enzymes. A pan-cancer and cross-
species comparison of CNAs highlighted 26 consistently altered
DNA regions, containing 11 enzymes in the glycolysis pathway in
addition to known cancer-driving genes. Furthermore, exogenous
expression of hexokinase and enolase enzymes in an experimental
immortalization system altered the subsequent copy number
status of the corresponding endogenous loci, supporting the

hypothesis that these metabolic genes act as drivers within the
conserved CNA amplification regions. Taken together, these results
demonstrate that metabolic stress acts as a selective pressure
underlying the recurrent CNAs observed in human tumors, and
further cast genomic instability as an enabling event in tumori-
genesis and metabolic evolution.
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Introduction

Cancer cells differ from normal cells in that they exhibit aberrant

proliferation, resist apoptosis, and invade other tissues (Hanahan &

Weinberg, 2011). Modern cancer classification relies on molecular

1 Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
2 Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
3 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
4 Department of Laboratory Medicine, University of California, San Francisco, CA, USA
5 Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
6 School of Life Sciences & Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
7 Department of Haematology, University of Cambridge, Cambridge, UK
8 Department of Genetics, M. D. Anderson Cancer Center, The University of Texas, Houston, TX, USA
9 Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA

10 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
11 Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
12 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
13 UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
14 Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
15 Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
16 Department of Neurology, Weill Cornell Medical College, New York, NY, USA
17 California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA

*Corresponding author. Tel: +1 310 206 6122; Fax: +1 310 206 8975; E-mail: tgraeber@mednet.ucla.edu
†These authors contributed equally to this work
‡These authors contributed equally to this work
§Present address: Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA

ª 2017 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 13: 914 | 2017 1

Published online: February 15, 2017 

http://orcid.org/0000-0002-6811-1941
http://orcid.org/0000-0002-6811-1941
http://orcid.org/0000-0002-6811-1941
http://orcid.org/0000-0002-0063-2513
http://orcid.org/0000-0002-0063-2513
http://orcid.org/0000-0002-0063-2513
http://orcid.org/0000-0003-4713-2089
http://orcid.org/0000-0003-4713-2089
http://orcid.org/0000-0003-4713-2089
http://orcid.org/0000-0003-0066-079X
http://orcid.org/0000-0003-0066-079X
http://orcid.org/0000-0003-0066-079X
http://orcid.org/0000-0001-8346-190X
http://orcid.org/0000-0001-8346-190X
http://orcid.org/0000-0001-8346-190X
http://orcid.org/0000-0003-0783-0683
http://orcid.org/0000-0003-0783-0683
http://orcid.org/0000-0003-0783-0683
http://orcid.org/0000-0001-8574-9181
http://orcid.org/0000-0001-8574-9181
http://orcid.org/0000-0001-8574-9181


characterization, including examination of genomic DNA mutations

and copy number alterations (CNAs; Stuart & Sellers, 2009).

Although individual oncogenes and tumor suppressor genes are

preferential targets of DNA amplifications and deletions, respec-

tively, the recurrent CNA patterns in tumors cannot be fully

explained by canonical cancer genes (Beroukhim et al, 2010; Muller

et al, 2012; Davoli et al, 2013). Thus, the unexplained recurrent

CNA patterns observed in human cancer subtypes are suggestive of

additional, not yet fully defined, selective pressures that are

conserved across patients and tumor types (Cahill et al, 1999;

Sheltzer, 2013; Cai et al, 2016). Reports that the cumulative pheno-

typic effects of many small gene dosage alterations across the

genome can impact the resulting tumor copy number landscape

(Solimini et al, 2012; Davoli et al, 2013) illustrate a need to consider

more subtle and combinatorial effects to explain the remaining

selective forces underlying recurrent CNA patterns observed in

human cancers.

One of the fundamental and consequential differences between

non-transformed and tumorigenic cells is the reprogramming of

cellular metabolism (Hanahan & Weinberg, 2011). The altered

metabolism of tumors is thought to benefit transformed cells in

several ways. Upregulation of glucose metabolism allows prolifer-

ating cells to meet their energy demand through synthesis of

adenosine triphosphate (ATP), while increased flux through

glycolysis branch pathways provides dividing cells with intermedi-

ates necessary for biosynthesis of nucleotides and fatty acids, as

well as reducing agents such as glutathione and NADPH

(DeBerardinis et al, 2008; Cairns et al, 2011). Moreover, in addi-

tion to glucose, cancer cells frequently upregulate consumption of

other metabolites for energy and biomass generation, including

glutamine, serine, and glycine (Jain et al, 2012; Maddocks et al,

2013). Notably, several individual metabolic enzymes have been

directly implicated in tumorigenesis (Kim et al, 2007; Dang et al,

2009; Locasale et al, 2011; Possemato et al, 2011; Patra et al,

2013; Li et al, 2014; Wang et al, 2014; Xie et al, 2014) and/or

immortalization (Kondoh et al, 2005; Kondoh, 2009; Kaplon et al,

2013), suggesting that altered metabolism is not a passive

bystander, but rather a driving force of oncogenesis (Yun et al,

2009; Zhang et al, 2012). Using an integrative analysis of CNA

data from human tumors, mouse models of cancer, cancer cell

lines, and a murine experimental immortalization system, here we

show that the loci of metabolic genes impact the recurrent CNA

changes observed in genomically unstable tumors. Our bioinfor-

matic and experimental results support a tumorigenesis model in

which copy number changes in metabolic genes contribute to an

enhanced glycolytic and proliferative state (see Fig EV1 for a

schematic of our overall approach).

Results

PCA-defined CNA signatures in human cancers

To develop an unbiased understanding of DNA copy number alter-

ations (CNAs) in cancer, we performed principal component analy-

sis (PCA) of gene-based CNA data derived from comparative

genomic hybridization (CGH) microarrays from 15 tumor types

available from The Cancer Genome Atlas (TCGA). This pan-cancer

PCA revealed a high degree of similarity in CNA profiles between

basal breast invasive carcinoma (BRCA basal), lung squamous cell

carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), and

serous uterine corpus endometrial carcinoma (UCEC serous) (Fig 1A

and Appendix Fig S1). In tumor type-specific PCA, analyzing the

four tissue-defined tumor sets of BRCA, LU (lung cancer consisting

of LUSC and LUAD [lung adenocarcinoma]), OV, and UCEC

revealed two strong PCA-based CNA signatures, termed signatures

A and B, in all four cases. Notably, signature A was highly consis-

tent across each tumor type, and reflected the pattern of pan-cancer

PC1 loadings (Figs 1B and C, and EV2A–C). In BRCA, signature A

tumors were enriched for the basal subtype, p53 point mutations,

high numbers of genomic breakpoints, and thus subchromosomal

alterations (Figs 1B and D, and EV2D; P < 0.001, P < 0.001,

P = 2 × 10�4, respectively). Signature B BRCA tumors, in contrast,

were enriched for luminal type tumors (P < 0.001) and exhibited

amplifications of the oncogenes MYC and MDM2 and deletion of the

tumor suppressor CDKN2A (Fig 1B). Amplification of MDM2 and

loss of CDKN2A were generally mutually exclusive in signature B

tumors (Fig EV2E), reflecting alternate mechanisms for disabling

the p53/ARF axis (Sherr & Weber, 2000). In the other tissues, signa-

ture A tumors were enriched for lung squamous cell carcinomas,

the proliferative subtype of ovarian cancer (The Cancer Genome

Atlas Research Network, 2011), and the serous subtype of uterine

cancer (Fig EV2A–D). Overall, signature A tumors demonstrated

enrichment of p53 mutations, more genomic breakpoints (BRCA,

LU, and UCEC), and a higher degree of copy number alterations

(LU, OV, and UCEC) than signature B tumors (Appendix Fig S2A

and B, P-values indicated in figure). In signature A tumors, the per

tumor average segment size is on the scale of 1 × 107 base pairs (ap-

proximately one-tenth of a chromosome, containing on the order of

100 genes). Overall, the segment sizes in signature A span from

focal to arm-length/whole chromosome scale. The per tumor aver-

age segment size for signature B BRCA, LU, and UCEC tumors is

statistically larger by 1.3-fold to sevenfold (Appendix Fig S2C–E;

P = 2 × 10�4 or less). Unlike signature A tumors, the signature B

CNA patterns were quite distinct between tumor types, although

some commonalities were observed including point mutations in

oncogenes such as KRAS (LU and UCEC) and amplification of

MYC (BRCA, LU, and OV). An alternative approach using

hierarchical clustering confirmed the existence of the shared pan-

cancer CNA signatures across multiple tumor types (signature A),

as well as distinct signature subtypes within each of the BRCA,

OV, UCEC, and LU tumor types (signature A vs. signature B)

(Fig EV3 and Appendix Fig S3, P-values of concordance between

PCA and clustering approaches indicated in figure). In summary,

PCA revealed the CNA signature A as a pattern shared across a

subset of tumors in multiple tissue types, as well as several

tumor type-specific cases of more distinct signature B patterns

(Appendix Fig S1D).

Because altered metabolism is a hallmark of human tumors, we

next tested whether the shared CNA signature A was enriched for

genes from metabolic pathways. Using CNA-based gene set enrich-

ment analysis over all metabolic pathways defined by KEGG

(Kanehisa et al, 2014), we found that the conserved profile of core

signature A tumors (i.e., OV, BRCA, UCEC, LU) (Fig 1C) was signifi-

cantly enriched for DNA amplifications of core glycolysis pathway

genes (Fig 1E and F, and Table EV1; P = 0.024). For example, BRCA
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signature A tumors exhibited DNA amplification of most genes from

the glycolytic pathway, as well as amplification of lactate dehydro-

genase B, deletion of pyruvate dehydrogenase subunits A and B,

and amplification of the glycolysis-regulating metabolic enzyme

TIGAR (human gene C12orf5; Fig 1G). Notably, this shared CNA

signature was defined by genome-wide patterns, rather than by

single gene loci, which were not consistently altered in all tumors

with a strong signature (Appendix Fig S2F). Interestingly, signature

A summary profiles from breast, ovarian, uterine, and lung tumors

all exhibited hexokinase 2 (HK2) amplification (Fig 1F and G),

whereas signature B profiles had primarily either HK3 (BRCA, LU,

OV) or HK1 (UCEC) amplification (Fig 1G and Appendix Fig S2G).

Thus, PCA identified a shared signature from breast, lung, ovarian,

and uterine carcinomas that was enriched for p53 mutations, higher

numbers of genomic breakpoints, and CNA of genes from the core

glycolysis pathway.

Elimination of passenger genes via cross-species
synteny mapping

While canonical oncogenes and tumor suppressor genes drive some

recurrent DNA copy number alterations, many recurrent CNA

regions cannot be fully explained by the presence of known cancer

genes (Beroukhim et al, 2010; Muller et al, 2012; Davoli et al,

2013). The conservation of CNA signature A across breast, lung,

ovarian, and uterine tumor subsets suggests the existence of one or

more selective pressures that are potentially shared by additional

tumor types. In that many of the human signature A conserved

regions identified in Fig 1C still span large, chromosome-scale

regions, we hypothesized that passenger genes could be diluting the

enrichment signal. We subsequently reasoned that a previously

reported approach of cross-species comparison of CNA data from

human tumors and non-human tumorigenesis models would elimi-

nate passenger genes via synteny mapping (Maser et al, 2007;

Zhang et al, 2013; Tang et al, 2014).

For the cross-species analysis, we first empirically determined

the full set of human signature A-like tumor tissue types that could

be included based on CNA similarity as defined by the pan-cancer

PC1 scores from Fig 1A. Namely, we sequentially added each

human tumor type in order of decreasing pan-cancer PC1 score and

tested whether inclusion improved the overall pathway enrichment.

In a parallel analysis, at each sequential step we also added the

corresponding tissue-matched mouse epithelial cancer model signa-

ture if it existed. Mouse CNA signatures obtained from the literature

and public repositories included signatures for genetically engi-

neered mouse models of mammary (breast) cancer (Brca) (Drost

et al, 2011; Herschkowitz et al, 2012), melanoma (Skcm)

(Viros et al, 2014), glioblastoma/high-grade astrocytoma (Gbm)

(Chow et al, 2011), and prostate cancer (Prad) (Ding et al, 2012;

Wanjala et al, 2015), as well as in vitro mouse epithelial cell models

of bladder (Blca), colorectal (Coad), and kidney (Kirc) cancer

(Padilla-Nash et al, 2013).

▸Figure 1. Principal component analysis (PCA) reveals a shared CNA signature in breast, lung, ovarian, and uterine carcinomas.

A Pan-cancer PCA of copy number data from a balanced, random sampling of tumors of 15 tumor types from The Cancer Genome Atlas (TCGA). The average tumor PC
scores for each tumor subtype are shown. Pan-cancer PC1 scores primarily separate diploid from highly aneuploid tumors, while PC2 distinguished GBM from the
other tumor types (Appendix Fig S1A and B). Four tumor subtypes with similar PC scores are labeled as “Signature positive (+)”. Tumor type abbreviations are as
defined by TCGA: ovarian serous cystadenocarcinoma (OV), breast (BR), bladder urothelial (BL), and thyroid (TH) carcinoma (*CA), uterine corpus endometrial
carcinomas (UCEC), lung (LU), and head and neck (HN) squamous carcinomas (*SC), skin cutaneous melanoma (SKCM), lung (LU), rectal (RE), colon (CO), stomach (ST),
and prostate (PR) adenocarcinomas (*AD), glioblastoma (GBM), low-grade glioma (LGG), and kidney renal clear cell carcinoma (KIRC).

B Copy number profiles of 873 breast invasive carcinomas (BRCA). Tumors (rows) sorted by tumor-specific principal component 1 (PC1) score with genomic locations
listed across the top. PCA identified and distinguished two signatures with similar degrees of variance in the first component. The triangle marks the transition from
signature A through diploid samples to signature B. The membership of each tumor with known molecular subtypes (e.g., basal/luminal) and mutant TP53 status are
indicated on the right with red horizontal bars and corresponding permutation-based enrichment P-values. Basal and luminal subtype classifications are from a
published gene expression-based determination (The Cancer Genome Atlas Research Network, 2012b). Signature A was moderately enriched for claudin-low tumors,
whereas the HER2-enriched subtype was not significantly associated with either signature A or B (Fig EV2D). Similar PCA-based distinctions were observed in the LU,
OV, and UCEC datasets (Fig EV2A–C).

C Pan-cancer PC1 loadings and signature A summary profiles for ovarian (OV), breast (BRCA), uterine (UCEC), and lung (LU) tumor types. Summary signatures are
normalized gene loci signal-to-noise ratios (SNRs) of the top 10% of PC1-based core signature A tumors compared to normal (non-tumor) samples. Pan-cancer PC1-3
loadings are shown in Appendix Fig S1C. Consistency signatures of conserved amplification and deletions (consistent regions) are indicated by their signed absolute
minimum consistency score (SAMCS). The SAMCS is non-zero when all CNA summary signatures have the same sign across all tumor types, and is derived from the
absolute value-based minimum summary metric, and then re-signed positive for amplification or negative for deletion (see Materials and Methods). In the bar graph, red
and blue denote consistently amplified and deleted regions, respectively. The number or percentage of consistent regions, genome coverage, and gene loci are indicated.
The positions of canonical oncogenes, proto-oncogenes, tumor suppressor genes, and telomerase components (TERC, TERT) present in these regions are indicated.

D Breast signature A tumors have more DNA breakpoints per chromosome than signature B tumors, but similar levels of copy number alteration (as measured by an
integrated CNA score proportional to the extent and absolute value magnitude of amplifications and deletions). P-values are indicated (top, Mann–Whitney U-test;
bottom, Student’s t-test), and data presented in box (median, first and third quartiles) and whisker (extreme value) plots. The number of breakpoints is inversely
proportional to the mean DNA segment length.

E KEGG metabolism pathway enrichment analysis based on consistent CNA patterns in the core signature A tumors of (A). The OV, BRCA, UCEC, and LU signatures from
(C) were sequentially added and only directionally consistent CNA changes were retained (see Materials and Methods). The combined glycolysis–gluconeogenesis
(glycolysis) and pentose phosphate pathway was included based on our prior mRNA work identifying the predictive value of this gene set (Palaskas et al, 2011). Core
glycolysis is a KEGG-defined gene subset (M00001). Table EV1 lists enrichment results for all KEGG metabolism pathways.

F Schematic showing average signal-to-noise (SNR) metrics of core glycolysis pathway genes plus 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB and
TIGAR), lactate dehydrogenase (LDH), and pyruvate dehydrogenase (PDH) in core signature A tumors from (C) and (E). A more detailed listing of the gene names can
be found in Materials and Methods.

G Gene copy number alteration distributions of selected glycolysis genes, TIGAR, the tumor suppressor p53, and the p53-associated cancer genes MDM2 and CDKN2A in
BRCA tumors. Data are presented in box (median, first and third quartiles) and whisker (extreme value) plots.

Data information: In panels (C, E–G), the top 10% of tumors from each indicated signature based on PC1 scores were used in the analysis. See also Fig EV2 and
Appendix Figs S1–S3.

◀
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Using human tumors only, the sequential enrichment analysis

showed a general improvement through the addition of the COAD

tumor type (Fig 2A, dotted orange line; average enrichment signal

of the top 10 metabolic pathways). Moreover, sequential inclusion

of the corresponding tissue-matched mouse cancer model

CNA signatures substantially enhanced the overall pathway

enrichment results with the peak occurring at HNSC, a sequentially

adjacent tumor type that has similar pan-cancer PC1 score with

COAD (Fig 2A, solid blue line and arrow indicating the peak).

Overall pathway enrichment then decreased as additional, less copy

number similar (lower pan-cancer PC1 scores) tumor types were

added.

The improvement upon including the mouse signatures supports

the hypothesis that the cross-species analysis eliminates passenger

genes and reveals pathways whose genes are enriched in the result-

ing cross-species consistent CNA regions. Taken together, this pan-

cancer and cross-species analysis demonstrates that a combination

of nine human tumor types (OV, BRCA, UCEC, LU, BLCA, READ,

SKCM, COAD, and HNSC) and four corresponding mouse tumor

models (Brca, Blca, Skcm, and Coad) gives the strongest overall

enrichment signal strength across all metabolic pathways (Fig 2A).

Examining the highly ranked individual pathways from this opti-

mized tumor type combination, we found that the carbohydrate

metabolism pathway “amino sugar and nucleotide sugar metabo-

lism” (hsa00520) was ranked first and glycolysis–gluconeogenesis

(hsa00010, henceforth called glycolysis) was ranked second among

KEGG metabolism gene sets (Fig 2B and Table EV1). As in the aver-

age of top 10 pathways (Fig 2A), the enrichment score for the

glycolysis gene set improved as more human tumor and mouse

models were sequentially included up through the additions of

HNSC and Coad (Fig 2C). Compared to our previous enrichment

analysis of the four core signature A tumors (Fig 1E), the permuta-

tion P-value of the glycolysis gene set improved from 0.05 to 0.001,

reflecting that our pan-cancer and cross-species analysis has elimi-

nated passenger genes in the non-consistent CNA regions. Thus, we

hereafter refer to the consistent signature pattern from OV up

through and including HNSC and Coad as “expanded signature A”.

Of particular note, upon expanding our analysis to include 1,321

gene sets from the MSigDB Canonical Pathways (CP) database,

glycolysis remained a top result as the third ranked pathway, with

the “glutathione-conjugation” pathway (involved in cell detoxifi-

cation and oxidative stress responses) also scoring strongly (Fig 2B

and Table EV2).

To visualize the pan-cancer and cross-species conserved genomic

regions, we plotted the consistency profiles of the expanded signa-

ture A human and mouse tumors (Fig 2D). Examination of

conserved regions revealed that HK2, TPI1, GAPDH, PGAM2, ENO2,

and LDHB glycolysis genes contribute to the cross-species consis-

tency signal. Among canonical oncogenes, MYC and KRAS were also

present in the amplification regions of the expanded signature A

human tumors and mouse models. Due to the well-documented and

clinically relevant role of glycolysis and pentose phosphate path-

ways in tumorigenesis, we chose to further examine the recurrent

amplification of the set of these gene loci in subsequent analyses.

Equally important for functional validation of these candidate path-

ways, the activity of glycolysis can be directly and indirectly

measured by many assays in both patients (e.g., FDG-PET imaging)

and experimental systems.

CNA signatures are predictive of glycolysis

In that the CNA-consistent region-defined signature A is enriched

for core glycolysis genes, we next tested whether signature A patient

tumors in vivo were associated with increased tumor glycolysis. To

assign a signature A score to a set of FDG-PET-imaged breast

cancers (Palaskas et al, 2011), we projected CNA data from these

tumors onto a PCA of the four core human tumor tissue types (OV,

BRCA, UCEC, and LU, Fig 1C). We found a strong correlation

between the strength of CNA signature A and the measured FDG-

PET standardized uptake values (SUVs) (Fig 3A and B; Pearson

rho = 0.94, P = 5 × 10�5). A similar analysis using all nine

expanded signature A tumor types demonstrated equivalent results

(Appendix Fig S4A; Pearson rho = 0.92, P = 2 × 10�4). Thus, the

CNA-defined signature A is associated with increased FDG uptake in

human primary tumors in vivo.

We next asked whether the CNA signature A-defined tumors

associated with high FDG uptake also had RNA-based signatures of

increased glycolysis. First, we compared signature A tumors to

signature B tumors using RNA-based enrichment analysis (GSEA).

We analyzed both BRCA and LU tumors because these tumor types

show distinct signature A and signature B subtypes. (OV signature B

is highly similar to the pan-cancer signature A pattern, and thus

does not provide a differential test (Fig EV2B). UCEC tumors were

not included due to a lack of sufficient paired RNA and DNA profil-

ing data.) In the enrichment analysis, we included a gene set

consisting of genes from the glycolysis and pentose phosphate path-

ways that were upregulated in FDG-high BRCA tumors, as defined

by our previous work (Palaskas et al, 2011). In the GSEA, the

empirically defined FDG-high gene set ranked number one overall

(NES = 2.5, permutation P-value = 2 × 10�4), confirming that Sig A

tumors have glycolysis RNA expression profiles matching those of

FDG-high tumors (Fig EV4A). Furthermore, BRCA and LU signature

A tumors were significantly enriched for genes from the full glyco-

lysis and pentose phosphate pathways (overall rank 4th of 76 path-

ways, NES = 2.0, permutation P-value = 6.8 × 10�3), as well as

other glycolysis-related pathways (Table EV3). This analysis of RNA

expression data is consistent with the enrichment of glycolysis-

associated pathways at the DNA copy number level (Fig 1E and

2B), and points to glycolysis-related pathways as selection targets

for upregulation in signature A tumors.

To further explore the RNA expression data, we predicted the

glycolytic phenotypes of the core signature A tumor types (BRCA,

LU, and OV) using RNA-based weighted gene voting (WGV) (Golub

et al, 1999) and our previously defined FDG prediction model

(Palaskas et al, 2011). UCEC tumors were again excluded because

there were not a sufficient number of samples with paired RNA and

DNA data. We found that RNA-based predictions of high glycolysis

were associated with the signature A end of tumor type-specific

PC1 for BRCA and LU (Fig EV4B–D). Signature A tumors were

predicted to be significantly more glycolytic than signature B

tumors for BRCA and LU (P-values of 2.4 × 10�17 and 5.7 × 10�18,

respectively, Fig EV4E). There was no significant differential trend

in OV tumors, potentially because almost all of these tumors are

genomically unstable (integrated CNA scores > 0.2) and the signa-

ture B of OV is relatively signature A-like (Fig EV2B and

Appendix Fig S1D). The OV predictions were consistent with

predicted high glycolysis across all tumors (Fig EV4E). To control
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for the general increase in glycolysis predictions at increased levels

of genomic instability, we also analyzed the correlation between

glycolysis predictions and PCA scores for several range windows of

integrated CNA scores. This analysis demonstrated that RNA-based

predictions of glycolysis were significantly correlated with PC1

scores in BRCA and LU tumors with high integrated CNA scores

(permutation P-value for BRCA and LU < 1 × 10�6 each, Fig EV4F).

Taken together, the DNA-defined signature A tumors exhibit

RNA expression patterns consistent with increased FDG uptake.

These RNA-based results support the more downstream activity-

based findings of elevated FDG uptake in signature A tumors

(Fig 3A and B).

Returning to the result of the CNA-defined signature A being

associated with increased FDG uptake in human primary tumors

in vivo, we next asked which sets of metabolic gene loci copy

number levels were most predictive of glycolytic phenotypes. We

performed a CNA-based weighted gene voting (WGV) analysis to

predict the glycolytic phenotypes of breast tumors and breast

cancer cell lines (Neve et al, 2006) using individual gene sets

from the KEGG metabolic pathways database (Kanehisa et al,

2014). Gene weights were calculated from each of our four tumor

type CNA “training” signatures. Specifically, we tested the ability

of individual metabolic pathways to predict (i) FDG uptake in

patient primary breast tumors and (ii) the lactate secretion of a

panel of 32 breast cancer cell lines (Hong et al, 2016). Averaging

results across these two test cases revealed that genes from the

glycolysis and pentose phosphate pathway were most predictive

of these metabolic phenotypes (Fig 3C and Table EV4; P = 0.01).

Moreover, signature A-based predictions were predictive of lactate

secretion for basal cell lines more so than for luminal lines

(Fig 3D and E, and Appendix Fig S4B), consistent with the

observed basal-type tumor enrichment in signature A samples

(Figs 1B and EV2D). Thus, consistent with the gene expression-

based predictions above, the glycolysis and pentose phosphate

pathway DNA copy number alterations from signature A are

predictive of glycolytic phenotypes of primary human breast

tumors and cancer cell lines.

Experimental recapitulation of tumor CNA signatures

Having demonstrated that the glycolytic pathway is statistically

associated with genome-wide DNA copy number patterns, we

sought an experimentally tractable system that would allow us

to test the hypothesis that recurrent patterns of DNA amplifi-

cation reflect metabolic selection pressures. We thus derived a

panel of immortalized mouse embryonic fibroblasts (MEFs) using

the classical 3T9 protocol (Todaro & Green, 1963). In this exper-

imental system, under standard culture conditions (e.g., 21%

O2), diploid cells undergo a crisis-associated event that increases

tolerance for genomic instability and allows them to escape

senescence and evolve into cells with chromosomal instability

and genomic aberrations (Fig 4A and Appendix Fig S5A; Sun &

Taneja, 2007). This system has been used to study core cancer

phenotypes such as proliferation, anti-apoptosis, and chromoso-

mal instability (Lowe et al, 1993; Gupta et al, 2007; He et al,

2007; Sotillo et al, 2007; Sun et al, 2007; Weaver et al, 2007)

and is one of the few experimentally tractable cancer models

involving spontaneous genomic instability (Sherr & DePinho,

2000). In addition, because this system is not driven by strong

oncogenes (e.g., KRAS mutation), it allows for complex CNA

signatures to evolve from a combination of individual, presum-

ably weaker, DNA alteration events.

We profiled the genome-wide copy number of 42 independent

MEF sublines by CGH microarray (Fig 4A). Most samples were pro-

filed after immortalization (post-senescence), with a few profiled

before or during senescence. Analysis of this CNA data by PCA

revealed that the MEF system recapitulated a two-signature pattern

(signatures A and B). These two signatures were generally orthogo-

nal, with the exception of a few “mixed” samples that had CNA

characteristics of both signatures A and B (Appendix Fig S5B). As

anticipated from prior MEF studies, immortalized MEF cells exhib-

ited an increased number of genomic breakpoints and a higher

degree of copy number alterations than the diploid, pre-senescent

MEF cells (Appendix Fig S5C and D). Importantly, the MEF-derived

signature A resembled the shared signature A pattern derived from

◀ Figure 2. Pan-cancer and cross-species analysis reveals enrichment of glycolytic genes in conserved amplification regions.

A Average pathway enrichment signal strength for the top 10 enriched KEGG metabolism pathways based on the consistent CNA patterns across multiple tumor types.
The four core CNA signature A patterns are defined as in Fig 1C. CNA signatures for other tissue tumor types are defined by the signal-to-noise ratios (SNRs) of all
tumors compared to tissue-matched normal (non-tumor) samples. Starting with the four core signature A tumor types from Fig 1 (OV, BRCA, UCEC, and LU),
additional human (orange) or human and mouse (blue) signatures were sequentially added based on their decreasing tissue type pan-cancer PC1 score from Fig 1A
(see Materials and Methods). The resulting sequentially restricted consistency signatures are illustrated in (D). A maximal peak (indicated by an arrow) in the
enrichment signal of this sequential analysis is seen after adding tumors through human HNSC and mouse Coad (no mouse Hnsc signature was available).
Enrichment signal strength is based on the negative log frequency of equivalent enrichment by chance (i.e., permutation P-value). Mouse tumor type abbreviations
are shown with lower case letters but otherwise match the human TCGA abbreviations.

B Enrichment analysis of metabolism (75 KEGG pathways) and canonical pathways (CP; 1,321 MSigDB canonical pathways). Permutation P-values for the consistent
CNA patterns from the four human core signature A tumors (defined in Fig 1C), the human expanded signature A (from A), and the human expanded signature A
combined with corresponding mouse cancer models (from A). FDR calculations are described in Materials and Methods. Tables EV1 and EV2 list all sequential
enrichment results for KEGG metabolism and canonical pathways, respectively.

C Enrichment score for the glycolysis pathway upon sequential addition of human tumors and mouse models (as in A) showing a maximal peak in the enrichment
signal corresponding to the expanded HNSC–Coad signature.

D Genome view of the sequential consistency signatures used in the enrichment analysis of (A–C). The locations of consistently amplified glycolysis genes, canonical
oncogenes, and tumor suppressors are indicated. Genes listed in parentheses (i.e., RPIA, TERC, TERT, APC, and TP53) were consistently altered across the human tumors
but not consistently altered in the mouse models, due in part to the inclusion of p53 genetic knockout mouse models (TP53) and known differences in human and
mouse telomere maintenance (TERC, TERT) (Sherr & DePinho, 2000). The synteny graph at the bottom indicates the syntenic mouse chromosome number and thus
the broken synteny regions between human and mouse genomes. This genome view chronicles how the sequential pan-cancer and cross-species analysis of
conserved amplification and deletion loci greatly reduces the percentage of consistent copy number alterations, thereby reducing the percentage of the genome
implicated as candidate driver regions.
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human breast, lung, ovarian, and uterine tumors. In particular, the

MEF-derived signature A was characterized by p53 mutation and

chromosome loss at the p53 locus, more genomic breakpoints,

subchromosomal-sized alterations, and a higher degree of copy

number alteration (Fig 4A and B, and Appendix Table S1). Addition-

ally, this experimental system allowed us to profile the same MEF

lines at subsequent passages, and a paired statistical analysis of five

evolving signature A lines revealed genomic regions changing from

mid- to late passage (Fig 4A and Appendix Fig S6A and B). Similar

to the shared human tumor signature A, both the MEF signature A

and the evolving MEF signature demonstrated DNA amplifications

of glycolysis and glycolysis-related genes (Table EV2). In particular,

both human and mouse CNA signatures A included amplification of

Hk2, Bpgm, Rpia, Tigar (mouse gene 9630033F20Rik), Eno2, Tpi1,
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Gapdh, Ldhb, Kras (mouse chr. 6), and Pgk2 (mouse chr. 17)

(Figs 1G and 4A, and Appendix Fig S6C).

In contrast, the MEF-derived signature B was characterized by

amplification of Mdm2 or deletion of Cdkn2a (Ink4a/Arf) and fewer

overall copy number alterations. Mdm2 amplification and Cdkn2a

loss are alternative mechanisms for inactivating p53 function in

human tumors and in MEFs (Sherr & DePinho, 2000), but as found

here result in a distinct CNA signature as compared to the p53 muta-

tion-associated signature A. As in human BRCA (Fig EV2E), amplifi-

cation of Mdm2 and loss of Cdkn2a were generally mutually

exclusive in signature B MEFs (Appendix Fig S6D), reflecting alter-

nate mechanisms for disabling the p53/ARF axis (Sherr & Weber,

2000). Additionally, Mdm2 amplification tends to co-occur with Hk1

amplification, both loci being located on mouse chr. 10. Thus, the

signature B cases are associated with an alternate HK amplification,

similar to our finding in signature B human tumors (HK1 or HK3

rather than HK2) (Fig 1G and Appendix Figs S2G and S6C).

Immunoblotting confirmed that signature A MEF and signature B

MEF lines generally had increased expression of Hk2 and Hk1

protein, respectively (Appendix Fig S6E and F).

To further characterize the association between p53 loss and

CNA signatures, we profiled the CNA patterns of 29 independent

p53�/� MEF sublines derived in standard 3T9 culture conditions.

Comparison of the p53�/� MEF CNA patterns to wild-type MEFs by

PCA demonstrated that the CNA patterns of p53�/� MEFs resemble

the wild-type MEF signature A pattern, with no signature B-like

sublines observed (Appendix Fig S7). p53�/� MEFs do not undergo

senescence (Olive et al, 2004), and consistent with this, we

observed that they tended to have less strong copy number alter-

ations. In summary, strong p53 functional loss (p53 mutation or

genetic loss) tends to lead to the CNA signature A pattern, which is

associated with a higher degree of copy number alterations (higher

integrated CNA score and more breakpoints) and Hk2 amplification,

while weaker or less complete p53 functional loss (e.g., mediated by

Mdm2 amplification or Cdkn2a loss) is associated with an alterna-

tive signature (signature B).

Numerical and structural chromosomal abnormalities

Next we sought to understand how CNA signatures revealed by

CGH relate to numerical and structural aneuploidy (i.e., whole chro-

mosomal and subchromosomal gains or losses, respectively). Using

propidium iodide-based DNA staining, we found that immortalized

MEF cells had increased total DNA content compared to pre-

senescent MEFs (Appendix Fig S8A–C). Similar results were

observed in a comparison between a genome-stable, close to

diploid, immortalized human mammary epithelial cell line

(MCF10A) and a human breast cancer cell line with a high degree of

DNA copy number alterations (Hs578T). In addition, we used spec-

tral karyotyping (SKY) to assess the numerical and structural chro-

mosomal aberrations in immortalized MEF cells. Profiling a

representative signature A MEF subline just after immortalization

(subline H1; passage 25, P25), SKY revealed increased total DNA

content (105 � 36 chromosomes) with nearly all chromosomes

having experienced whole chromosome gains (Appendix Fig S8D, E

and H). In addition, there was substantial cell-to-cell heterogeneity

in the number and type of chromosomes at passage 25. Profiling the

same MEF cell line 23 passages later (P48), SKY revealed that the

average number of chromosomes had slightly decreased and stabi-

lized (84 � 12 chr), as has been reported previously (Hao &

Greider, 2004), and clonal markers had begun to emerge (e.g.,

translocation (3:16)) (Fig 4C and Appendix Fig S8F, G and I). We

also observed a substantial number of double minutes in some of

the cells examined at P48. As expected, the most strongly amplified

chromosomes by SKY were scored as gains in CGH data (e.g., chrs.

3 and 6 in subline H1 at P48/49). Since array CGH analysis is

normalized by input DNA quantity, genomic regions scoring as

negative on a log2 CNA plot can be greater than diploid if most other

chromosomes have amplified to an even greater extent (e.g.,

trisomy chrs. 1, 2, and 7 in subline H1 at P48/49). Similar results

have been reported for karyotyping and CGH results of human

cancer cell lines (Kytölä et al, 2000). Taken together, these data

reveal that immortalized MEFs experience substantial numerical

and structural chromosomal abnormalities, similar to what is

observed in human tumors, and further support that selection for

optimized rearranged genomes occurs.

Senescence-associated oxidative stress as a selective force for
copy number alterations

The MEF system allowed us to investigate the selective pressures

driving copy number changes during immortalization. Because

MEFs cultured under physiological oxygen conditions (3% oxygen)

undergo little to no senescence and exhibit less DNA damage

◀ Figure 3. PCA-based CNA signatures are predictive of breast cancer glycolytic metabolism in vivo and breast cancer cell line metabolism in vitro.

A PC1-sorted copy number profiles of a balanced, random sampling of tumors from the four core CNA-consistent tumor types (breast, lung squamous, ovarian, and
uterine carcinomas, Fig 1A) along with copy number profiles from primary breast carcinoma tumors with glycolytic levels imaged in vivo by 18F-fluorodeoxy-
glucose positron emission tomography (FDG-PET) (Palaskas et al, 2011). On the right, red and green values indicate high and low FDG standardized uptake values
(SUVs), respectively, for FDG-imaged tumors.

B FDG uptake values in FDG-PET measured tumors are highly correlated with CNA signature A PC1 score (q, Pearson rho correlation; P-value = 5.3 × 10�5).
C CNA values for genes from glycolysis and pentose phosphate pathways have stronger predictive power of FDG-PET SUV in breast tumors and of lactate secretion

(sec.) in breast cancer cell lines than other metabolism pathway-based sets of genes. The table indicates the correlation between weighted gene voting (WGV)-
based predictions on the test sets and the measured metabolic phenotypes. WGV was performed with individual training on signature A tumors from each of the
core four tumor types (breast (BRCA), lung (LU), ovarian (OV), and uterine (UCEC); top 10% signature A compared to normal (non-tumor) samples), the voting
predictions were averaged, and compared to the measured metabolic phenotype. P-values were assessed by permutation analysis. See Table EV4 for all pathways.

D, E Signature A-based WGV predictions and signature A-based PC1 projections (as in B) have stronger correlation with measured lactate secretion for basal-like breast
cancer cell lines than for luminal-like lines (D). See Appendix Fig S4B for luminal cell line data. Basal and luminal subtype classifications are from a published gene
expression-based determination (Neve et al, 2006). The breast cancer-based glycolysis and pentose phosphate pathway (G & PP) WGV predictions are shown as a
representative case (E).

Data information: See also Appendix Fig S4B.
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(Parrinello et al, 2003), we tested whether oxidative stress-induced

senescence is a selective pressure for copy number alterations. To

protect cells from oxidative stress, we cultured MEFs in 3% oxygen

in media supplemented with or without catalase, an enzymatic scav-

enger of reactive oxygen species (ROS) (Halliwell, 2003; Graham

et al, 2012). When doubly protected from oxidative stress, MEFs did

not undergo senescence and maintained relatively diploid genomes

(Fig 4A and Appendix Fig S5A). In addition, we observed a varia-

tion in the degree of senescence experienced by MEFs derived in

atmospheric oxygen concentrations (21%) (Appendix Fig S5A).

Upon calculating the degree of senescence encountered by each

subline (senescence metric described in Materials and Methods), we

found a correlation between senescence and the degree of copy

number alterations (Fig 4D, Spearman rho = 0.66, P = 3 × 10�8;

and Appendix Fig S9A). Furthermore, p53�/� cells did not undergo

senescence (Olive et al, 2004) and exhibited less strong copy

number alterations than wild-type signature A MEFs (Appendix Fig

S7B; P = 9 × 10�4). Taken together, our results implicate senes-

cence-associated redox stress as one of the selective forces driving

the copy number alterations recurrently observed in human tumors.

MEF CNA signatures recapitulate recurrent patterns from human
tumors and further implicate the glycolysis pathway in shaping
the cancer genome

Our pan-cancer and cross-species analysis revealed that the glyco-

lysis pathway is highly enriched in conserved CNA regions (Fig 2).

Because the MEF signature A is qualitatively similar to the human

expanded signature A, we next asked how inclusion of our MEF

signatures would affect metabolic and canonical pathway enrich-

ment analysis. Although the MEF immortalization system utilizes

fibroblast cells and the mouse tumors are epithelial in origin, both

types of models share a similar cross-species consistency with the

expanded signature A tumor types (Appendix Fig S9B). When the

human tumors signatures were combined with the MEF signatures,

consistent genome regions were reduced to 3.6% of the genome

spread over 13 conserved regions (Fig 4E). In cross-species pathway

enrichment analysis, MEF CNA signatures added a similar amount

of enrichment signal to human tumor signatures as do the non-MEF

mouse model signatures, and when combined together, the enrich-

ment was even stronger (e.g., glycolysis and core glycolysis

pathways, Fig 4F). When all signatures are used, glycolysis was the

top-ranked enriched pathway out of 1,321 MSigDB canonical

pathways (Table EV2). Thus, including the MEF signatures in the

cross-species analysis further implicates the glycolysis pathway in

shaping the cancer genome.

Examination of the cross-species genomic regions conserved in

human tumors, mouse models of cancer, and the MEF immortaliza-

tion system revealed consistent amplification of five regions

containing the COSMIC database-enumerated oncogenes GATA2

(human chr. 3; Fig 4E, last SAMCS line), TRRAP (chr. 7, region 4),

MYC (chr. 8, region 1), CHD4 (chr. 12, region 1), and KRAS (chr. 12,

region 2) (Forbes et al, 2015). Notably, four of the cross-species

conserved CNA genomic regions included genes from the glycolysis

◀ Figure 4. A mouse embryonic fibroblast (MEF) immortalization system recapitulates the two-signature CNA patterns and glycolysis gene CNA enrichment
observed in human tumors and mouse models.

A Top: Copy number profiles of 59 samples from 42 independent mouse embryonic fibroblasts (MEF) sublines before, during, and after senescence recapitulate the two-
signature CNA patterns observed in human tumors. Twenty-two sublines evolved to Sig. A patterns, 13 sublines exhibited Sig. B, and seven sublines remained diploid-
like due to redox protection. PC1 scores for analysis of only signature A MEFs (PC1-Sig A), only signature B MEFs (PC1-Sig B), or all MEFs (PC1-Sig AB) are indicated on
the left. Also indicated are a metric of the degree of senescence observed during immortalization (senescence score), protection by 3% O2-based hypoxia or catalase
(+), or both (++) during immortalization, CNA profiling at passage 1 (P1), exogenous MYC expression (which enabled cells to bypass senescence), and Trp53
sequencing status (* indicates a non-severe mutation p.183D > E, blank indicates not sequenced, additional p53 sequencing information in Appendix Table S1).
Signature A MEF lines profiled at more than one passage number are indicated by the start (earlier passage) and end points (later passage) of the upward “evolving
signature A” arrows. For comparison to (C), the early (25) and late (49) passages of the H1 subline that were characterized by spectral karyotyping (SKY) are indicated
on the left by triangles. The indicated chromosome 6 region includes loci for Bpgm, Hk2, Rpia, Eno2, Tpi1, Gapdh, Tigar, Ldhb, and Kras. Bottom: Summary signatures of
amplification and deletion loci in copy number profiles (normalized PC1 loadings) are shown for MEF WT and p53�/� signature A (Sig. A) samples. A paired t-test
analysis of signature A MEF lines profiled at more than one passage number revealed genomic regions associated with mid- to late-passage CNA evolution (log10 t-
test P-value signed positive for amplifications, negative for deletions; labeled “Evolving”). Individual profiles of p53�/� signature A samples are not shown.

B Signature A MEFs have more DNA breakpoints and a larger degree of copy number alteration (integrated CNA score) than signature B MEFs. Signature A MEFs had a
subset of cases with large numbers of breakpoints per chromosome (> 10) that were not observed in the signature B MEFs (hypergeometric P-value = 0.02, Student’s
t-test P-value = 4 × 10�5). Data are presented in box (median, first and third quartiles) and whisker (extreme value) plots.

C Spectral karyotyping (SKY) of the H1 MEF subline at passage 48. Whole chromosomal gains of varying extent are observed for all chromosomes with some
chromosomes experiencing translocation, for example, t(3:16), and deletion, for example, del(4). Additional chromosome spreads and a summary table for P25 and
P48 karyotypes are shown in Appendix Fig S8. CGH profiles for H1 cells are in (A) (indicated by the triangles in the SKY column) and Appendix Fig S6A and B.

D The amount of senescence demonstrated during MEF line derivation (senescence score, see Materials and Methods) is highly correlated with the degree of copy
number alterations obtained (integrated CNA score) (Spearman rho = 0.66, P-value = 3 × 10�8). Single protection indicates protection by 3% O2 culture conditions or
media supplementation with 250 U/ml catalase. Double protection indicates that cells were cultured at 3% O2 with catalase.

E Conserved amplification and deletion loci in copy number profiles across core and expanded signature A human tumor types (Hs Sig. A), corresponding mouse
tumorigenesis model signatures (Mm models), and the MEF immortalization system (MEF Sig. A). The human and mouse signatures are as defined in Fig 2, and the
wild-type MEF signatures are from (A). In the human consistent regions, the 52.3% consistently altered gene loci include bona fide tumor suppressor genes (p53),
oncogenes (MYC, KRAS), telomere components (TERC, TERT), and core glycolysis genes (e.g., HK2). As in Fig 2D, genes listed in parentheses were consistently altered
across the human tumors but not consistently altered in the mouse. The tissue-specific, non-lymphoid oncogenes from the COSMIC database that are in a conserved
amplification or deletion region (TRRAP, CHD4) are listed for completeness (Forbes et al, 2015).

F Enrichment signal strength (negative of log permutation P-value) for the glycolysis and core glycolysis gene sets improve when MEF CNA signatures are added to the
human and mouse CNA signatures from Fig 2. The degree of increased enrichment upon addition of the MEF signatures is quantitatively similar to adding mouse
tumorigenesis model signatures. Adding all signatures into the analysis further strengthens the enrichment (last column). Table EV2 lists results for the enrichment
analysis of the remaining MSigDB canonical pathways when human core and expanded signature A, mouse models, and MEF immortalization models are
sequentially combined.

Data information: See also Appendix Figs S5–S9.
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pathway: HK2 (chr. 2), GCK and PGAM2 (chr. 7, region 1), ENO2,

TPI1, and GAPDH (chr. 12, region 1, which includes TIGAR), and

LDHB (chr. 12, region 2, which also includes KRAS). In both human

tumors and the MEF immortalization system, the genomic region

harboring TIGAR–GAPDH–TPI1–ENO2 was separated from the

LDHB–KRAS region by a deletion-prone region that includes the

tumor suppressor CDKN1B (Appendix Fig S9C–E).

To investigate whether amplification of the DNA cross-species

conserved CNA regions results in upregulated RNA expression

levels, we examined the correlation between DNA copy number and

RNA expression levels in BRCA, LU, and OV tumors for glycolytic

genes and, as a point of comparison, known oncogenes

(Appendix Fig S10). We examined the average correlation across

BRCA, LU, and OV signature A tumors for all genes in the 12 cross-

species conserved regions. We found that three glycolytic genes

(LDHB, TPI1, and GAPDH) and one oncogene (KRAS) exhibited

strong DNA–RNA correlation (r > 0.66), three glycolytic genes

(HK2, ENO2, and PGAM2) and three oncogenes (MYC, CHD4, and

TRRAP) exhibited moderate correlation (0.2 < r < 0.5), and only

one glycolytic gene (GCK) and one oncogene (GATA2) exhibited

weak DNA–RNA correlation (r < 0.2) (Appendix Fig S10A and B).

This analysis indicates that gene copy number alterations at the

DNA level generally lead to increased RNA expression in signature

A tumors in BRCA, LU, and OV tumors, with a similar degree of

correlation observed for both glycolysis genes and oncogenes.

Finally, we compared the upregulation of glycolytic genes and onco-

genes on two cross-species conserved regions of human chr. 12 that

contain both types of genes (Appendix Fig S10C). Within the centro-

mere-distal region of chromosome 12, the glycolytic genes TPI1 and

GAPDH show strong correlation (Spearman rank correlation = 0.71

and 0.66, respectively) while the oncogene CHD4 and the glycolytic

gene ENO2 exhibit moderate correlate (Spearman rank correla-

tion = 0.42 and 0.32, respectively). Within the more centromere-

proximal region, LDHB and KRAS both exhibit strong correlation

(Spearman rank correlation = 0.68 and 0.66, respectively). Impor-

tantly, the correlation of RNA expression with DNA amplification is

not stronger for oncogenes than for glycolytic genes within these

cross-species regions. Taken together, these results support a model

in which the selection pressures shared during immortalization and

tumorigenesis result in cross-species conservation of the glycolysis

gene loci copy number alterations (Fig 4E and F, and Table EV2).

Alteration of CNA signatures by exogenous expression of
metabolic enzymes

The presence of core glycolysis genes in cross-species conserved

amplification regions suggests that these metabolic gene loci drive

the amplification of these regions. To test this hypothesis, we trans-

duced pre-senescent MEFs with either wild-type HK2 or HK1,

kinase-dead HK2 (D209A/D657A) (McCoy et al, 2014), or wild-type

ENO2 and allowed the cells to senesce and immortalize in the pres-

ence of these exogenously expressed proteins (Appendix Fig S11).

Analyzing the signature A set of sublines, we found that the endoge-

nous Hk2 locus (chr. 6) was less amplified in cells expressing exoge-

nous wild-type hexokinase (P = 0.048) (Fig 5A and B). As a control,

a signature A MEF cell line expressing kinase-dead hexokinase

did not show reduced amplification of the Hk2 locus (P = 2 ×

10�4). In that MEF lines exogenously expressing hexokinase still

demonstrated positive selection for the centromere-proximal half of

chr. 6 (Fig 5A), we examined the ratio of Hk2 gene locus copy

number to the maximal amplification on chromosome 6 (Hk2:Chr6

max). In this analysis, we found that cells expressing exogenous

hexokinase demonstrated significantly reduced Hk2:Chr6 max ratios

(P = 3 × 10�3) (Fig 5A and C). Additionally, a MEF subline express-

ing exogenous ENO2 exhibited deletion rather than amplification of

the Eno2 locus on chr. 6 (P = 0.02) (Fig 5A and D). Analyzing the

signature B set of sublines, we found that the endogenous Hk1 locus

(chr. 10) was copy number neutral, rather than amplified, in a cell

line expressing exogenous hexokinase (P = 0.17), whereas a signa-

ture B MEF cell line expressing kinase-dead hexokinase did not

show reduced amplification of the Hk1 locus (Fig 5E and F).

Fisher’s combined statistical analysis of these results yielded

P-values of 0.001 or less (Fig 5).

Taken together, these results demonstrate that exogenous

expression of metabolic enzymes can alter the copy number status

of the endogenous genomic loci, supporting these metabolic genes

as drivers within the conserved amplification regions observed in

human tumors and mouse models. In addition, these results support

a model in which the net propensity for a chromosomal region to

be amplified or deleted is in part related to the sum of the fitness

effects of the genes present (Davoli et al, 2013). For example, when

HK2 is exogenously expressed, the centromere-distal half of

chromosome 6 had a low copy number value in early culture but

after additional culture demonstrated increased copy number,

supporting that the other gene loci of this region (such as Eno2,

Gapdh, and other glycolytic genes) do have a remaining pro-fitness

benefit (Fig 5A).

Metabolism and growth phenotypes of CNA signatures

To test whether there exist phenotypic differences between signa-

ture A and signature B MEFs, we characterized 11 wild-type MEF

lines representative of either signature A or B and one mixed signa-

ture line. We found that signature A MEFs generally had higher

rates of glucose consumption and lactate production than signature

B MEF lines (Figs 6A and EV5F). Plotting the PC1 score versus

glucose consumption, we found that CNA-based signature A was

highly predictive of glucose consumption in the MEF signature A

lines (Fig 6B). In contrast, signature B was only moderately predic-

tive of the glucose consumption of signature B lines, and was not as

accurate as signature A in predicting the glucose consumption of

signature A lines (Figs 6B and EV5A). In addition, we noted that the

signature A cell lines generally exhibited significantly higher rates of

proliferation than the signature B cell lines (Fig 6C). Similar to

glucose consumption, signature A was predictive of the growth rates

of signature A MEFs and signature B was predictive of the growth

rates of signature B MEFs, while cross-signature predictions had less

power (Figs 6D and EV5B). Furthermore, we observed a general

coevolution of higher growth rates and increased CNA signature

strength in MEF lines that were profiled at different passage

numbers (Fig 6D). As noted above, the evolving MEF CNA signature

pattern was enriched for DNA amplifications of genes in the core

glycolysis and glycolysis-associated pathways (Table EV2), particu-

larly due to amplification of chromosome 6, which contains multiple

metabolic gene loci including Hk2 and Eno2 (Fig 4A and E, and

Appendix Fig S6B).
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To test whether signature A and signature B MEFs differentially

use glucose, we cultured MEF cells with [1,2-13C]-labeled glucose

and conducted metabolomic profiling by mass spectrometry

(Fig EV5C–G and Table EV5) (Metallo et al, 2009). In all MEF lines

tested, we observed a low percentage of single heavy labeled carbon

[M1 isotopomer compared to M2] in pyruvate, lactate, and alanine,

indicating that the contribution of glucose-derived carbon from the

oxidative arm of the pentose phosphate pathway to these metabo-

lites was relatively low (Fig EV5D). Nonetheless, the patterns of

heavy isotope labeling revealed differences in nutrient utilization

between signature A and B MEF cell lines. On average, metabolites

of early glycolysis, the pentose phosphate, and nucleotide synthesis

pathways showed a higher percentage of glucose-derived heavy

carbon labeling in signature A MEFs (Figs 6E and EV5E). In

contrast, signature A cells had a lower percentage of glucose-derived

heavy carbon labeling in metabolites of the serine synthesis path-

way and the TCA cycle. When compared to signature B MEFs,

signature A cells also tended to exhibit increased consumption of

serine, glutamine, and other amino acids (Fig EV5F and G). The

increased glutamine consumption in signature A MEFs reflects

similarity with basal breast cancer cell lines (also signature A associ-

ated), which exhibit increased glutamine consumption relative to

luminal breast cancer cell lines (Timmerman et al, 2013). In

general, the percentage of individual metabolites from the early

glycolysis, the pentose phosphate, and nucleotide synthesis path-

ways that incorporated heavy, glucose-derived carbon metabolites

was positively correlated with glucose consumption rates (e.g., fruc-

tose-1,6-bisphosphate, Fig 6F). Conversely, metabolites from the

serine synthesis pathway and the TCA cycle showed a negative

correlation between glucose consumption rates and the percentage

of each molecule containing a heavy, glucose-derived carbon (e.g.,

3-phosphoserine, Fig 6F). While caution must be exercised when

interpreting metabolite labeling results, we overall observed a

consistent trend of differences between signature A and B lines. Of

note, the differences between signature A and B lines were mainly

in regard to scale, with the strongest signature B lines demonstrating

similar glycolysis and proliferation rates, as well as similar meta-

bolic profiles, as the weakest signature A lines.

Taken together, these results demonstrate that signature A MEFs,

which resemble signature A human tumors, exhibit increased

glycolysis and to a somewhat lesser extent increased proliferation,

and have an increased relative proportion of glucose-derived carbon

in metabolites of pentose phosphate-associated biosynthetic path-

ways such as nucleotide synthesis. These findings are consistent

with published mouse model studies in which tumor cells that are

channeling glucose toward nucleotide biogenesis achieve faster

rates of proliferation (Boros et al, 1998; Ying et al, 2012).

Thus, our cross-species and pan-cancer CNA analysis revealed

conserved amplification regions shared by the majority of tumor

types studied that are enriched for genes involved in core glycolysis.

To aid others in pan-cancer and cross-species CNA signature

comparisons, we have created an interactive web-interface resource

available at http://systems.crump.ucla.edu/cna_conservation/.

Discussion

Chromosomal instability and high glycolysis characterize some of

the most aggressive tumors, and the complexity and plasticity of the

genomes in aggressive tumors can hinder molecularly targeted

therapies (Nakamura et al, 2011; McGranahan et al, 2012; Shi et al,

2012). While the glycolytic changes associated with tumorigenesis

were one of the early defining phenotypes of cancer cells (Warburg,

1956), they have not previously been linked to recurrent DNA copy

number patterns. Taken together, our experimental and computa-

tional data support a model in which glycolysis-linked selective

pressures encountered during tumorigenesis (e.g., redox stress and

senescence) shape the highly recurrent DNA copy number alter-

ations found in aneuploid human tumors (Fig 6G). We found that

CNAs in core glycolysis enzymes (e.g., HK2) and other cancer-

linked metabolic enzymes such as TIGAR are coordinately enriched

in tumors with distinct CNA signatures. These CNA signatures are

predictive of glycolysis, including patient FDG-PET activity and cell

line proliferation phenotypes. The strong correlation of CNA-based

principle component scores to uptake of the glucose analogue FDG

in breast cancer patients and the predictive power of CNA signatures

for breast cancer cell metabolism (Fig 3) provide support that the

CNAs affecting metabolic gene loci collectively act as a copy

number-based driver of metabolic differences. Importantly, in that

exogenous expression of hexokinase and enolase enzymes reduced

▸Figure 5. Alteration of CNA signatures by exogenous expression of metabolic enzymes.

A CD1 MEFs expressing exogenous HK1/HK2 or ENO2 exhibit reduced amplification of the endogenous Hk2 or Eno2 loci, respectively. Chr. 6 copy number profiles
from control signature A MEFs (untransduced or expressing red fluorescent protein (RFP)) compared to signature A MEFs expressing either wild-type HK1 or HK2,
kinase-dead HK2 (HK2 KD, D209A/D657A), or wild-type ENO2. The positions of endogenous Hk2 and Eno2 are indicated. MEF lines profiled at more than one
passage number are indicated by the start (earlier passage) and end points (later passage) of the arrows under “Evolving MEFs”.

B–D Boxplots of Hk2 copy number (B), ratio of Hk2 copy number to maximum amplification of chromosome 6 (defined operationally as the 5th percentile CNA value
across chr. 6 to avoid outlier effects) (C), and Eno2 copy number (D). Control MEFs: untransduced (squares) or expressing RFP (diamonds); test MEFs expressing
wild-type HK1 (upside-down triangles), HK2 (triangles in B and C), kinase-dead HK2 (HK2 KD, D209A/D657A, circles), or wild-type ENO2 (triangle in D). In this
analysis, copy number data from samples profiled at multiple passages were averaged to prevent overrepresentation of these cell lines. P-values were calculated
using Student’s t-test (B), Mann–Whitney U-test (C), and z-score (B, C) based on criteria described in Materials and Methods. Data are presented in box (median,
first and third quartiles) and whisker (extreme value) plots.

E Signature B MEFs expressing exogenous HK2 exhibit less amplification of the Hk1 locus. Chr. 10 copy number profiles from control signature B MEFs (untransduced
or expressing RFP) compared to signature B MEFs expressing wild-type HK2 or kinase-dead HK2 (HK2 KD). The positions of endogenous Hk1 and Mdm2 are
indicated.

F Boxplot of the Hk1 copy number with indicated P-value (z-score). Data are presented in box (median, first and third quartiles) and whisker (extreme value) plots.

Data information: Fisher’s combined P-values for the alteration of endogenous loci CNA by exogenous expression of metabolic enzymes is 3 × 10�5 (panels B, D, F) or
7 × 10�4 (panels C, D, F). For all comparisons in this figure, no significant differences were observed between untransduced and RFP-expressing MEFs. See also
Appendix Fig S11.
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the propensities for amplifications of the corresponding endogenous

hexokinase and enolase loci, these metabolic genes empirically

score as driver loci. However, we cannot exclude the possibility that

the observed metabolic differences are in part due to other cancer-

associated regulatory changes such as epigenetic events known to

affect metabolism (Sebastián et al, 2012). Combined with the obser-

vation that metabolic genes can facilitate cellular immortalization

(Kondoh et al, 2005; Kondoh, 2009; Kaplon et al, 2013), our results

implicate tumor metabolism as an additional fitness measure linked

to how genomic instability can enable tumorigenesis.

Chromosomal instability and aneuploidy—positive and negative
impact on tumor cell fitness

Most solid human tumors exhibit both numerical and structural

aneuploidy (Holland & Cleveland, 2012). Paradoxically, chromoso-

mal instability can act either as an oncogene or as a tumor suppres-

sor depending on the context (Weaver et al, 2007). Moreover,

addition of a single chromosome in MEF cells induces a stress

response that impairs proliferation and immortalization (Williams

et al, 2008). However, numerical aneuploidy can lead to chromoso-

mal instability (Nicholson et al, 2015) which results in subchromo-

somal gains and losses as observed in human tumors, in mouse

models of cancer, and in immortalized MEF cells. Thus, aneuploidy

can cause an initial fitness loss due to the costs of dealing with

non-optimized chromosome numbers, gene copy numbers, and

resulting proteomic imbalances. However, the associated state of

chromosomal instability enables further evolution of the genome

toward fitness gains through refinement of gene copy number

levels. In sum, these fitness gains either outweigh or offset the fit-

ness losses due to aneuploidy. In this context, our data support a

model (Fig 6G) in which metabolic selection forces and metabolic

gene loci contribute to the recurrent patterns of DNA copy number

alteration observed in human tumors.

Redox stress, biomass accumulation, and associated glycolytic
changes in tumorigenesis

Tumorigenesis is a complex, multistage process during which cells

must acquire the capability to maintain redox balance while accu-

mulating the macromolecular precursors required for proliferation

(DeBerardinis et al, 2008; Hanahan & Weinberg, 2011). Numerous

stimuli, including RAS mutations, matrix detachment, altered meta-

bolism, and hypoxia, induce the accumulation of intracellular ROS

(Lee et al, 1999; Schafer et al, 2009; Weinberg et al, 2010;

Anastasiou et al, 2011). Because increased ROS levels can trigger

replicative senescence and subsequent cell cycle arrest (Lee et al,

1999; Takahashi et al, 2006), tumors must maintain pools of

reduced glutathione using NADPH in part produced via the pentose

phosphate pathway. Additionally, increased levels of ROS can divert

glycolytic flux into the pentose phosphate pathway through, for

example, oxidation and inhibition of the glycolytic enzyme PKM2,

thereby supplying cells with the reducing power and precursors for

anabolic processes (Boros et al, 1998; Anastasiou et al, 2011).

▸Figure 6. Signature A and B MEFs exhibit differential metabolic and proliferation phenotype strengths.

A PCA-defined signature A MEFs exhibit higher glucose consumption rates than signature B MEFs (Student’s t-test P-value = 0.009). Glucose consumption was
measured using a bioanalyzer.

B PC1 scores of signature A MEFs are predictive of glucose consumption rates in signature A MEFs, while scores from signature B MEFs have weaker predictive power in
signature B MEFs. In cross-prediction tests, signature A-based predictions of signature A MEF line metabolic phenotypes perform the best (Fig EV5A). Glucose
consumption was measured using a bioanalyzer.

C PCA-defined signature A MEFs exhibit higher average growth fold change, as observed in 3T9 culture, compared to signature B MEFs. Signature A MEFs had a subset
of cases with high growth rates (average fold change in cell number per passage > 4) that were not observed in the signature B MEFs (hypergeometric P-value =
0.02).

D Correlation and a general coevolution of higher growth rates and increased CNA signature strength. Arrowed lines indicate progressing MEF lines profiled at more
than one passage number (Appendix Figs S6A and B, and S9A). In cross-prediction tests, PC1 scores of signature A MEFs are more predictive of average growth fold
change in signature A MEFs, while scores from signature B MEFs are more predictive in signature B MEFs (Fig EV5B).

E Metabolomic profiling of 11 wild-type MEF lines representative of either signature A or B cultured for 24 h with [1,2-13C]-labeled glucose. The metabolic pathway
schematic is colored based on differences observed in the percent heavy label for intracellular metabolites (defined as percent of metabolite molecules with
isotopomer mass greater than the monoisotopic molecular weight, M0) between signature A and B MEFs using the signal-to-noise (SNR) metric. Red indicates a
higher heavy carbon-labeling percentage in signature A MEFs, and blue indicates a higher heavy carbon-labeling percentage in signature B MEFs. Signature A MEF
lines incorporate more glucose-derived carbon in metabolites from the early glycolysis steps, the pentose phosphate pathway, and nucleotide synthesis, and a smaller
fraction of glucose-derived carbon per molecule in metabolites from the later glycolysis steps, the serine synthesis pathway, and the TCA cycle. Full metabolomic data
can be found in Table EV5.

F Correlation of fructose-1,6-bisphosphate (F1,6BP) and negative correlation of 3-phosphoserine (pSer) with glucose consumption rates. Note, the high to low range for
percent metabolite molecules with incorporated label varies for each metabolite, but generally does not extend from 0 to 100%. Signature A and B MEFs are colored
red and blue, respectively.

G Model of copy number selection and fitness gains during tumorigenesis. Genomic instability enables fitness gains in tumor metabolism. In human tumors, cancer cell
lines, and an experimental MEF immortalization system, immortalization and tumorigenesis lead to multiple CNA signatures that are predictive of the tumor
phenotypes of metabolism and proliferation. Senescence-associated redox stress and other tumorigenesis-related constraints select for stronger CNA signatures. A
shared high glycolysis-associated signature A is observed in breast, lung, ovarian, and uterine tumors, additional tumor types, mouse models, and the MEF model
system, and is linked with a higher range of glycolysis and proliferation phenotypes. Genetic manipulation of glycolysis enzymes leads to alteration of corresponding
CNA signature propensities. Signature A and B genomes reflect two distinct trajectories from diploidy to tumor aneuploidy. Signature A tumors are enriched for
mutations in p53 and have smaller sized amplification and deletion genomic regions (i.e., have a higher number of genomic breakpoints), potentially providing
increased alternative genome options. Signature A involves amplification of several genes in glycolysis-related pathways (such as HK2, TIGAR, TPI1, GAPDH, ENO2, PGAM2,
and LDHB). Signature B CNA patterns occur in generally less glycolytic and proliferative samples and show more variation across different tumor types. In particular,
signature B is enriched forMDM2 amplification and CDKN2A loss, strongMYC amplification, and KRASmutation and involves alternate hexokinase isoforms (HK1, HK3).

Data information: Data in (A, C) are presented in box (median, first and third quartiles) and whisker (extreme value) plots. Error bars indicate standard deviations of
biological replicates in (A, B, C and F). See also Fig EV5.
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Consistent with this published knowledge on the role of metabolism

in tumorigenesis, our study suggests that the metabolic stress asso-

ciated with senescence (Fig 4A and D) and the metabolic demands

of rapid proliferation (Fig 6) are components of the selective

pressures underlying recurrent CNA changes.

Experimentally and computationally deciphering CNA patterns

Our experimental and bioinformatic approaches complement exist-

ing approaches for testing hypotheses for the selection pressures

underlying recurrent CNA patterns observed in human tumors.

Other CNA-analysis approaches target different resolutions of the

genome. Statistical algorithms such as GISTIC (Genomic Identifi-

cation of Significant Targets in Cancer) have identified many strong

individual driver genes and candidate regions (Mermel et al, 2011).

Integrating CNA data with RNA knockdown screens and gene

expression data has further identified driver genes missed by statisti-

cal analysis of CNA data alone (Sanchez-Garcia et al, 2014). RNA

knockdown-based analyses have also been used to support a more

systems-level model in which the selection for amplification and

deletion of a particular DNA region is based on the cumulative

effects of many positive and negative fitness gains from multiple

genes within that genomic region (Solimini et al, 2012; Cai et al,

2016). Subsequent computational extensions have incorporated

somatic mutation patterns to infer the cumulative impact of co-

localized genes on fitness, and to successfully predict whole

chromosome and chromosome-arm resolution-level CNAs (Davoli

et al, 2013).

Our approach using phenotypic data, functional gene sets, and

cross-species syntenic mapping has yielded additional insight into

the selective pressures shaping tumor CNA patterns, namely coordi-

nated alteration of genes involved in glycolytic metabolism. Incor-

poration of copy number data from genetically engineered mouse

models allowed synteny constraints to substantially reduce passen-

ger amplifications and define a minimal collection of stringently

conserved copy number regions. Additionally, to our knowledge,

our experimental approach is the first reported system in which

CNA and associated phenotypes have been followed and repeatedly

sampled as non-immortalized cells undergo spontaneous genomic

instability and proceed from a diploid state to an immortalized

aneuploid state. Using this approach, we were able to validate

genomic regions that are (i) associated with increased glycolysis

and to a lesser but significant extent proliferation, (ii) enriched for

genes from the core glycolysis pathway, and (iii) conserved in both

human tumors and mouse models of cancer. Metabolic pathways

are known to be coordinately regulated by modest changes in

mRNA expression of functionally related genes (Mootha et al, 2003;

Palaskas et al, 2011). The coordinated alterations of metabolic

genes at the DNA level adds an additional mechanism, namely

conserved sets of CNA changes, by which glycolysis is dysregulated

to promote tumorigenesis.

A strength of our PCA-based approach is the ability to unbiasedly

reveal distinct CNA subsignatures within a tumor type. Observed

subsignatures, confirmed using an independent clustering analysis,

were found to be associated with previously known pathology- or

profiling-defined tumor subtypes (e.g., basal/luminal CNA signa-

tures in BRCA) (Bergamaschi et al, 2006) (Figs 1B and EV2A–D).

Across multiple tumor types, loss of p53 function through p53

mutation is associated with the high breakpoint signature A pattern.

In contrast, loss of the p53/ARF axis via other mechanisms (MDM2

amplification or CDKN2A deletion) in BRCA human tumors is asso-

ciated with a different CNA signature (signature B) that in general

has fewer breakpoints. In our experimental follow-up, the MEF

system recapitulated a two-signature pattern. Notably, the two

mouse signatures and their associated phenotype strengths were

defined by the initiating loss of tumor suppression event, namely

Trp53 mutation versus either Mdm2 amplification or Cdkn2a loss.

Thus, while the consequences of TP53 mutation and “MDM2 ampli-

fication/CDKN2A loss” are considered functionally similar and

therefore mutually exclusive (Wade et al, 2013), our findings indi-

cate they are not fully equivalent in terms of genomic instability and

subsequent metabolic evolution. The tolerance of more highly

disrupted and rearranged genomes upon p53 mutation appears to

allow more flexibility in the evolution of aneuploid cancer genomes,

thereby resulting in stronger glycolysis and somewhat enhanced

proliferation. The specific combinations of CNA changes occurring

in enzyme isoforms defining a metabolic pathway may be consid-

ered “onco-metabolic isoenzyme configurations” with differential

potency, and the sets of combinations possible may be limited

in part by the degree or specifics of tolerance to genomic re-

arrangements.

In summary, our work illustrates the value of cross-species

comparisons in the analysis of DNA copy number data, much as

recent pan-cancer and integrated genomic approaches have uncov-

ered novel cancer subtypes and driver genes (Gatza et al, 2014;

Hoadley et al, 2014). The broken chromosome synteny between

human and mouse genomes reduced the size of potential driver

regions by fivefold on average, and identified a relatively small

number of amplification and deletion regions highly conserved

between mouse and human (Figs 2D and 4E). These conserved

regions are consistently found across the majority of tumor types

examined, have subchromosomal scale with a median size on the

order of 10 megabase pairs, and include the glycolysis pathway

enzyme CNAs observed in our experimental work.

Therapeutic and diagnostic implications

The most copy number aberrant tumors tend to have fewer point

mutations in canonical oncogenes (e.g., KRAS, Fig EV2A and C) and

less canonical oncogene amplification (e.g., MYC, Fig 1B). Hence,

genomic instability and subsequent coordinate alterations in multi-

ple genes within a functional pathway may provide an alternate,

more complex, pathway to acquisition of aggressive tumor pheno-

types—with tumor evolution and selection guiding the trajectory

(Ciriello et al, 2013). In that KRAS mutation and MYC amplification

can drive glycolysis (Ying et al, 2012; Dang, 2013), the findings that

signature A tumors are de-enriched in these events relative to signa-

ture B tumors and enriched for glycolysis gene loci CNA amplifi-

cations support that tumor cells can meet their metabolic demands

through distinct mechanisms, or combinations thereof. Future

models of the most aggressive cases of cancer will need to incorpo-

rate aspects of spontaneous genomic instability (mediated by

distinct instability mechanisms) and resulting copy number alter-

ations. Translationally, understanding how CNA patterns alter

cancer genomes and impact cancer phenotypes will aid in the identi-

fication of metabolic or other “hard-wired” vulnerabilities that can
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be therapeutically targeted. Furthermore, the relative stability of

DNA samples, combined with the growing linkage between highly

recurrent copy number changes and phenotypes, supports the

potential for molecular classification and diagnostic tests based on

DNA copy number patterns (Hieronymus et al, 2014; Cai et al,

2016).

Materials and Methods

Cell culture and mouse strains

Tissue culture

CD1 mouse embryonic fibroblasts, E14.5, were purchased from

Stem Cell Technologies. p53fl/fl MEFs were obtained at day E14.5

from p53fl/fl (FVB.129P2-Trp53tm1Brn/Nci) crossed with C57BL/6-

129/SV mice. MEF cells were maintained in Dulbecco’s modified

Eagle’s medium without pyruvate and supplemented with 10% FBS

and 1% SPF. Cells were lifted and re-plated at a density of

9 × 105 viable cells/60-mm dish every 3–4 days (i.e., 3T9 protocol;

Todaro & Green, 1963). Cells were grown in atmospheric oxygen

unless otherwise indicated. Breast cancer cell lines were obtained

from the laboratory of Frank McCormick and extensively profiled

both genomically and transcriptionally by the laboratory of Joe Gray

(Neve et al, 2006; Hong et al, 2016).

Genetic engineering

Overexpression of HK1, HK2, kinase-dead HK2 (D209A/D657A), or

ENO2 glycolysis enzymes and the MYC oncogene or the control

protein RFP in CD1 MEFs was accomplished by transduction of non-

immortalized cells with pDS-FB-neo retrovirus, followed by selec-

tion in 600 lg/ml G418. Deletion of p53 in p53fl/fl MEFs was

induced by infection of non-immortalized cells with either retroviral

Cre-GFP or Cre-ERT2 plus treatment with 1 lM 4-OHT.

ROS protection

To protect cells from reactive oxygen species (ROS), cells were

cultured either at physiological oxygen concentrations (3% O2),

with 250 U/ml catalase from bovine liver (Sigma-Aldrich), or with

both 3% O2 and catalase.

Genome profiling

Array CGH profiling

Genomic DNA was harvested using the DNeasy kit (Qiagen). DNA

from MEF lines and reference genomic DNA from C57BL/6J mouse

tissue were hybridized to Agilent SurePrint G3 Mouse CGH

4 × 180 k CGH microarray chips at the UCLA Pathology Clinical

Microarray Core. Bioconductor analysis tools were used for data

processing: Moving minimum background correction and print-tip

loess normalization were performed in snapCGH package (Smith

et al, 2009); circular binary segmentation (with a minimum of three

markers per segment) was performed on smoothed and log2-

transformed copy number profiles using DNAcopy package (Seshan

& Olshen, 2016); segmented data were converted into a matrix by

genes for downstream analyses using mus musculus 9 RefSeq refer-

ence genome from 2011.08.11 in CNTools (Zhang, 2016). Copy

number profiles are presented using the Integrative Genomics

Viewer (IGV) (Thorvaldsdóttir et al, 2013). CNA public datasets and

TCGA tumor type abbreviations are available in the Data availability

section.

Bioinformatic and statistical analysis

PCA

Principal component analysis (PCA) was performed using the mean-

centered matrix of CNA values per gene locus. Genes with identical

profiles across samples were collapsed to a single representative

gene. Techniques such as PCA and the related singular value

decomposition (SVD) have been applied to copy number data previ-

ously (Sankaranarayanan et al, 2015).

Mutation and tumor subtype enrichment analysis

To test for enrichment of mutations or tumor subtypes within CNA-

defined PC scores, TCGA tumors were queried for mutations and

tumor subtype designations using the cBioPortal for Cancer Geno-

mics (Gao et al, 2013). For each tumor type, we included all genes

with significant q-values as calculated by MutSigCV (Lawrence et al,

2013). We also included the gene POLE, a catalytic subunit of DNA

polymerase epsilon, in our analysis because of its frequent mutation

in UCEC (The Cancer Genome Atlas Research Network, 2013).

Molecular subtypes tested were as follows: BRCA: basal, luminal,

claudin-low, and HER2-enriched (The Cancer Genome Atlas

Research Network, 2012b); LUAD: bronchioid, magnoid, and squa-

moid (The Cancer Genome Atlas Research Network, 2014); LUSC:

basal, classical, primitive, and secretory (The Cancer Genome Atlas

Research Network, 2012a); OV: proliferative, immunoreactive, dif-

ferentiated, and mesenchymal (The Cancer Genome Atlas Research

Network, 2011); and UCEC: POLE ultramutated, microsatellite insta-

bility hypermutated, copy number low, and copy number high (The

Cancer Genome Atlas Research Network, 2013). Tumors were

sorted by their PC1 score, and we calculated a Kolmogorov–Smirnov

statistic against the expected distribution of mutations or tumor

subtypes. The statistical significance of enrichment was determined

by permutation analysis.

Hierarchical clustering

The TCGA tumors were hierarchically clustered using the pheatmap

package in R (Kolde, 2015). Prior to clustering, the CNA values were

filtered for gene loci that had zero values across all tumor samples.

Non-centered and non-scaled tumor samples were then clustered

using centered Pearson correlation distance and Ward’s method

(with dissimilarities squared before cluster updating). The strength

of concordance between hierarchical clustering results and PCA-

based signatures was assessed using the hypergeometric P-value.

Consistency signatures

Consistency signatures of conserved amplification and deletions

regions were determined using stringent consistency criteria. The

signed absolute minimum consistency score (SAMCS) was defined

as non-zero when all CNA summary signatures have the same sign

across all tumor types, and the score is derived from the absolute

value-based minimum summary metric and then re-signed positive

for amplification or negative for deletion. Consistent amplifications

or deletions were combined into a “consistent region”, when abso-

lute SAMCS values greater than 0.05 spanned at least 1 Mbp. Any
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two consistent regions separated by < 1 Mbp were combined into a

single consistent region.

Enrichment analysis and weighted gene voting (WGV)

Metabolic pathway enrichment analysis (gene set enrichment analy-

sis, GSEA; Subramanian et al, 2005) and pathway-specific weighted

gene voting (WGV) prediction analysis (Golub et al, 1999) were

performed using 75 metabolic pathways defined by the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) database (Kanehisa et al,

2014), using pathways with seven or more measured genes. In the

RNA-based enrichment analysis, we included a gene set consisting

of genes from the glycolysis and pentose phosphate pathways that

were upregulated in FDG-high BRCA tumors, as defined by our

previous work (Palaskas et al, 2011). For CNA data, an expanded

run of enrichment analysis was performed using 1,321 canonical

pathways (CP) of seven or more measured genes as defined by the

Broad Institute’s Molecular Signatures Database (MSigDB). For

KEGG-based metabolic pathway enrichment analysis of CNA data,

we collapsed metabolic isoenzyme loci (genes with the same

enzyme activity; Enzyme Commission [EC] numbers) that were

within 100 kilobases from each other into a single representative

locus. For mRNA expression analysis, metabolic isoenzymes were

not collapsed. In CNA-based enrichment analysis using gene-based

versions of the genome consistency signatures defined above,

enrichment scores were calculated through the ranked set of consis-

tently amplified genes since after this point the genes that are not

consistent across signatures have a consistency value of zero and

accordingly have tied ranks. Consistency regions were stepwise

restricted by sequentially adding human, and corresponding tissue-

matched mouse model of cancer, signatures based on their decreas-

ing tissue type PC1 value from Fig 1A. To combine BRCA and LU

into one enrichment analysis for mRNA data, genes were ordered by

their average rank in BRCA and LU tumor types. For WGV predic-

tions of metabolic phenotypes, t-scores were used as gene weights.

To calculate permutation P-values, we calculated the fraction of

1,000 randomly chosen gene sets of equal size that gave average

gene set rankings (column 2 of Fig 3C) better than the true gene set.

False discovery rate (FDR) q-values were calculated using the

Benjamini–Hochberg procedure. To increase statistical stringency,

FDR values for each individual glycolysis–gluconeogenesis gene set

(KEGG Glycolysis-Gluconeogenesis, KEGG Core Glycolysis, KEGG

Glycolysis-Gluconeogenesis & Pentose Phosphate Pathway, Reac-

tome Gluconeogenesis, Reactome Glucose Metabolism, Reactome

Glycolysis, Biocarta Glycolysis Pathway) were calculated while

removing the other glycolysis–gluconeogenesis gene sets. CNA and

metabolite changes were visualized in the context of metabolic path-

way structure using Cytoscape (Smoot et al, 2011).

Core glycolysis and glycolysis-associated gene list (from Fig 1F)

HK—hexokinase (HK1, HK2, HK3, HK4/glucokinase/GCK); GPI—

glucose-6-phosphate isomerase; G6PC—glucose-6-phosphatase cata-

lytic subunit (G6PC, G6PC2); FBP—fructose-bisphosphatase (FBP1,

FBP2); PFK—phosphofructokinase (PFKL—liver type, PFKM—

muscle, PFKP—platelet); PFKFB—6-phosphofructo-2-kinase/fruc-

tose-2,6-biphosphatase (PFKFB1, PFKFB2, PFKFB3, PFKFB4);

TIGAR—TP53 induced glycolysis regulatory phosphatase; ALDO—

aldolase, fructose-bisphosphate (ALDOA, ALDOB, ALDOC); TPI1—

triosephosphate isomerase 1; GAPDH—glyceraldehyde-3-phosphate

dehydrogenase (GAPDH, GAPDHS—spermatogenic); PGK—phos-

phoglycerate kinase (PGK1, PGK2); PGAM—phosphoglycerate

mutase (PGAM1, PGAM2, PGAM4, BPGM—bisphosphoglycerate

mutase); ENO—enolase (ENO1, ENO2, ENO3); PK—pyruvate kinase

(PKLR—liver and red blood cell, PKM2—muscle); LDH—lactate

dehydrogenase (LDHA, LDHB, LDHC, LDHAL6A—LDH A-like 6A,

LDHAL6B—LDH A-like 6B); and PDH—pyruvate dehydrogenase

(PDHA1, PDHA2, PDHB, DLD—dihydrolipoamide dehydrogenase,

DLAT—dihydrolipoamide S-acetyltransferase).

Metrics

Signal-to-noise ratio (SNR) = (l1 � l2)/(r1 + r2), t-score =

(l1 � l2)/sqrt(r1
2/n1 + r2

2/n2), where l = mean, r = standard

deviation, n = number of samples.

Correlation of mRNA and CNA

Copy number alteration and mRNA expression levels for genes found

in the cross-species conserved regions in Fig 4E were compared by

calculating the Spearman rank correlation coefficient. BRCA, LU, and

OV samples with paired mRNA and CNA data were included. UCEC

tumors were excluded because there were not sufficient UCEC

samples with paired RNA expression data (26% of all samples with

CNA data). Known oncogenes were identified by comparison with

the Catalogue Of Somatic Mutations In Cancer database (COSMIC,

http://cancer.sanger.ac.uk/cosmic; Forbes et al, 2015).

Senescence score

A summary senescence score for each MEF subline was calculated

by subtracting the area under the MEF’s growth curve, Z(x), in log2
scale, from the area under an ideal growth curve, Y(x) (i.e., consis-

tent growth at the fastest observed rate). The area difference was

then averaged by dividing by the passage number, p, and log2-trans-

formed, resulting in a normally distributed score.

Senescence Score ¼ log2

Pp
x¼2

YðxÞþYðx�1Þð Þ
2 � ZðxÞþZðx�1Þð Þ

2

� �

p

Integrated CNA

A genomic instability score termed “integrated CNA” was calculated

by summation of the Circular Binary Segmentation algorithm-

inferred absolute mean copy number of segments multiplied by the

length of each segment.

Int.CNAsample ¼P
segments jsegment end� segment startj � jsegment meanj

#base pairs in sample

Box and whisker plots

In box and whisker plots, the box represents the median, as well as

the first and third quartiles, and the whisker indicates the extreme

values within 1.5 times the inter-quartile range. In cases where the

number of samples permitted, individual values are superimposed

as jitter plots.

Statistical tests

Indicated P-values were calculated using (i) Student’s t-test for

normally distributed data (with normality confirmed by the P-value
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of the Shapiro–Wilk test being > 0.05 for both datasets under

comparison); (ii) Mann–Whitney U-test for non-normally distributed

data; (iii) hypergeometric distribution P-values; and (iv) permuta-

tion-based approaches, as described in the figure legends. For data

with a single data point in one comparison group, the z-score was

used.

Propidium iodide staining

Mouse embryonic fibroblasts cells were washed in cold PBS and

then fixed in ice-cold 70% ethanol. Fixed cells were washed in PBS

and then incubated for 15 min in PBS with 20 lg/ml propidium

iodide and 0.1% (v/v) Triton X-100. Data were acquired using a

FACSCalibur (Becton Dickinson) analytic flow cytometer in the

UCLA Jonsson Comprehensive Cancer Center and Center for AIDS

Research Flow Cytometry Core Facility. Cells were gated using

forward scatter and side scatter to remove debris and dead cells,

and 10,000 cell events were recorded.

Spectral karyotyping

Exponentially growing MEF cells were exposed to colcemid

(0.04 lg/ml) for 1 h at 37°C and to hypotonic treatment (0.075 M

KCl) for 20 min at room temperature. Cells were fixed in a mixture

of methanol and acetic acid (3:1 by volume) for 15 min, and then

washed three times in the fixative. Slides were prepared by dropping

the cell suspension onto wet slides followed by air-drying. Slides

were processed for spectral karyotyping (SKY) according to the

manufacturer’s protocol with slight modifications using mouse paint

probes (ASI, Vista, CA). Images were captured using Nikon 80i

microscope equipped with spectral karyotyping software from ASI,

Vista, CA; 12–18 metaphases were karyotyped from each cell line.

Immunoblot analysis

Cells were lysed in modified RIPA buffer (50 mM Tris–HCl (pH 7.5),

150 NaCl, 10 mM b-glycerophosphate, 1% NP-40, 0.25% sodium

deoxycholate, 10 mM sodium pyrophosphate, 30 mM sodium fluo-

ride, 1 mM EDTA, 1 mM vanadate, 20 lg/ml aprotinin, 20 lg/ml

leupeptin, and 1 mM phenylmethylsulfonyl fluoride). Whole-cell

lysates were resolved by SDS–PAGE on 4–15% gradient gels and

blotted onto nitrocellulose membranes (Bio-Rad). Membranes were

blocked overnight and then incubated sequentially with primary

and either HRP-conjugated (Pierce) or IRDye-conjugated secondary

antibodies (Li-Cor). Blots were imaged using the Odyssey Infrared

Imaging System (Li-Cor). Protein levels were quantitated using

ImageJ (http://imagej.nih.gov/ij/). Primary antibodies used for

Western blot analysis included hexokinase 1 (2024, Cell Signaling

Technology), hexokinase 2 (2867, Cell Signaling Technology), p53

(NB200-103, Novus Biologicals), and enolase 2 (8171, Cell Signaling

Technology).

Glucose consumption and lactate secretion measurements

BRCA cell lines

Lactate secretion rates of breast cancer cell lines were measured

from the culture media using a colorimetric assay kit (BioVision)

(Hong et al, 2016).

MEFs

Glucose consumption and lactate secretion rates of MEFs were

measured using a BioProfile Basic bioanalyzer (NOVA Biomedical).

Data were normalized to the integrated cell number, which was

calculated based on cell counts at the start and end of the time

course and an exponential growth equation. Because the prolifera-

tion rates of MEF sublines vary, each cell line was seeded at the

appropriate density so as to give an integrated cell number of

approximately 6.5 × 105 cells in a 6-well plate. All samples were

run as biological triplicates, and consistent results were seen in

multiple independent experiments.

Mass spectrometry-based metabolomic analyses

Sample preparation

Mouse embryonic fibroblasts sublines were seeded onto 6-well

plates, and after 24 h, media was replaced with media containing

4.5 g/l [1,2-13C]-labeled glucose. Sample collection occurred after

24 h of culture in the labeled glucose media. For intracellular

metabolite analysis, cells were washed with ice-cold 150 mM

ammonium acetate (NH4AcO) pH 7.3 and metabolites extracted in

1 ml ice-cold 80% MeOH. The cells were quickly transferred into a

microfuge tube, and 10 nmol norvaline was added to the cell

suspension for use as an internal standard. The suspension was

subsequently vortexed three times over 15 min and then spun down

at 4°C for 5 min. The supernatant was transferred into a glass vial,

the cell pellet was re-extracted with 200 ll ice-cold 80% MeOH and

spun down and the supernatants were combined. Metabolites were

dried at 30°C under vacuum and re-suspended in 50 ll of 70%

acetonitrile (ACN). For cell culture media metabolite analysis (foot-

print profiling), 20 ll of cell-free media samples was collected.

Metabolites were extracted by adding 300 ll ice-cold 80%

methanol, followed by vortexing three times over 15 min, and

centrifugation for 10 min at 13,000 rpm at 4°C. The supernatant

was transferred to a fresh tube, dried using a vacuum evaporator,

and re-suspended in 50 ll of 70% acetonitrile (ACN); 5 ll was used

for mass spectrometry-based analysis.

Mass spectrometry runs

Samples were run on a Q-Exactive mass spectrometer coupled to an

UltiMate 3000RSLC UHPLC system (Thermo Scientific). The mass

spectrometer was run in polarity switching mode (+3.00 kV/

�2.25 kV) with an m/z window ranging from 65 to 975. Mobile

phase A was 5 mM NH4AcO, pH 9.9, and mobile phase B was ACN.

Metabolites were separated on a Luna 3 lm NH2 100 Å

(150 × 2.0 mm) (Phenomenex) column. The flow was kept at

200 ll/min, and the gradient was from 15% A to 95% A in 18 min,

followed by an isocratic step for 9 min and re-equilibration for

7 min.

Data analysis

Metabolites were detected and quantified as area under the curve

(AUC) based on retention time and accurate mass (≤ 3 ppm) using

the TraceFinder 3.1 (Thermo Scientific) software. Relative amounts

of metabolites between various conditions, percentage of metabolite

isotopomers (relative to all isotopomers of that metabolite), and

percentage of labeled metabolite molecules (isotopomer M1 and

greater, relative to all isotopomers) were calculated and corrected
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for naturally occurring 13C abundance (Yuan et al, 2008). Footprint-

ing data were normalized to the integrated cell number as described

above, and intracellular metabolite concentrations were normalized

to the number of cells present at the time of extraction. All samples

were run as biological triplicates, and consistent results were seen

in independent experiments. Our analysis focused on metabolite

level, percent isotopomer, and percent labeled metabolite measure-

ments with ANOVA P-values across the sample panel of < 0.05 in

individual experiments, and Pearson correlation coefficients across

all samples and between independent experiments of > 0.5.

Patient tumor samples and quantitative FDG-PET imaging

Breast cancer patient samples with imaged FDG uptake within

4 weeks prior to surgery, excluding patients with secondary breast

cancers and recurrent disease, were collected surgically and

processed as previously described (Palaskas et al, 2011). Of eigh-

teen tumors collected in the original study for RNA microarrays

(Palaskas et al, 2011), ten samples had sufficient remaining frozen

tissue for array CGH profiling. None of the patients received

systemic therapy or radiation prior to imaging. 18FDG tumor uptake

was quantified as standardized uptake values (SUVs) and showed

the expected wide dynamic range (3.8–18.5). There was no signifi-

cant difference in patient age, tumor volume, and lymph node

involvement between the groups of FDG-high and FDG-low breast

cancers. Breast cancers with high 18FDG-PET SUVs frequently

lacked expression of the estrogen receptor (ER) and the proges-

terone receptor (PR), but hormone receptor-negative tumors were

also represented among the tumors with the lowest FDG uptake

(Palaskas et al, 2011). We excluded lobular breast carcinomas,

because they have been shown to take up less FDG than ductal

carcinomas (Avril et al, 2001) We excluded large breast carcinomas

(> 5 cm) and breast carcinomas with multifocal FDG uptake

because our protocol did not include tissue autoradiography to

direct the molecular tissue analysis to areas of distinct radiotracer

retention. This study was approved by the Institutional Review

Board (IRB) of Memorial Sloan-Kettering Cancer Center, and all

participating patients signed the informed consent.

Data availability

CNA dataset

Copy number profiling data for wild-type and genetically modified

MEF samples and FDG-PET-imaged human breast tumors are

available through Gene Expression Omnibus (GEO) accession

GSE63306 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE63306).

CNA conservation web resource

An interactive website for user-defined pan-cancer and cross-species

CNA conservation analysis to perform analysis analogous to that in

Figs 1C, 2D, and 4E using any combination of tens of available CNA

signatures from human tumors and mouse models (and additional

signatures as they become available) and/or the inclusion of

uploaded CNA signatures (http://systems.crump.ucla.edu/cna_con

servation/). Signatures and genome reference files used in the inter-

active website are additionally available through the Biostudies

repository, accession number S-BSST7.

Metabolomics dataset

Provided in Table EV5.

TCGA CNA dataset

The Cancer Genome Atlas (TCGA) CNA profiles were downloaded

from the TCGA portal in September 2012 (https://cancergenome.

nih.gov/). Copy number profiles obtained were pre-processed level

3 data based on human genome 19, with copy number variations

(CNVs) removed. TCGA tumor type abbreviations and number of

samples analyzed: bladder urothelial carcinoma (BLCA, 97

samples), brain lower grade glioma (LGG, 181), breast invasive

carcinoma (BRCA, 873), colon adenocarcinoma (COAD, 447),

glioblastoma multiforme (GBM, 593), head and neck squamous cell

carcinoma (HNSC, 308), kidney renal clear cell carcinoma (KIRC,

539), lung adenocarcinoma (LUAD, 368), lung squamous cell carci-

noma (LUSC, 359), ovarian serous cystadenocarcinoma (OV, 584),

prostate adenocarcinoma (PRAD, 171), rectum adenocarcinoma

(READ, 168), skin cutaneous melanoma (SKCM, 256), stomach

adenocarcinoma (STAD, 162), thyroid carcinoma (THCA, 333), and

uterine corpus endometrial carcinoma (UCEC, 492).

TCGA mRNA expression dataset

The Cancer Genome Atlas mRNA expression data were downloaded

from the TCGA portal in May 2014. Gene-based mRNA expression

levels were pre-processed, normalized Level 3 RNA Seq V2 RSEM

values. TCGA tumor type abbreviations and number of samples

analyzed: BRCA (865), LUAD (357), LUSC (358), OV (263).

Mouse tumor model CNA datasets

The genetically engineered mouse models with characterized CNA

were obtained from public datasets: mammary (breast) tumors

(Brca, 57 samples, GSE30710; 62 samples, GSE43997; 44 samples,

GSE27101) (Drost et al, 2011; Herschkowitz et al, 2012); melanoma

(Skcm, 30 samples, GSE58265) (Viros et al, 2014); glioblastoma/

high-grade astrocytoma (Gbm, 72 samples, GSE22927) (Chow et al,

2011); and prostate tumors (Prad, 18 samples GSE35247; 55

samples, GSE61382) (Ding et al, 2012; Wanjala et al, 2015). Addi-

tionally, in vitro epithelial murine cell lines modeling human carci-

nomas were obtained from public datasets: transformed colon cells

(Coad, seven samples, GSE70790) and transformed bladder and

kidney cells (Blca and Kirc, 6 and 7 samples, GSE45128; Padilla-

Nash et al, 2013). Abbreviated mouse tumor names match to the

corresponding tissue-based human tumor abbreviations from the

TCGA datasets. The data were obtained from GEO and segmented

using the algorithm described above. Datasets for which no mm9

genome annotation was available on the repository were lifted over

to mm9 using UCSC web tools (Rosenbloom et al, 2015).

Expanded View for this article is available online.
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