Steven G. Clarke, Ph.D.

Laboratory Address:
Paul Boyer Hall 628, 637 & 638

Work Address:
Paul Boyer Hall 640

Affiliations
Research Interests
My laboratory studies the biochemistry of the aging process. We want to understand the role of spontaneous reactions that result in covalent alterations to proteins and the role of enzymatic reactions that can reverse at least some types of the damage. We have focused on the degradation of aspartic acid and asparagine residues and the subsequent metabolism of their racemized and isomerized derivatives. The alteration of these residues can represent a significant fraction of the irreversible damage to proteins and would be expected to contribute to the limitation of their useful lifetime and that of the organism as a whole. We are presently determining the biological role of protein methyltransferases that specifically modify proteins containing altered aspartyl residues. These enzymes can initiate the conversion of D-aspartyl residues to the L-configuration as well as the conversion of isopeptide linkages to normal peptide bonds. Such "repair" reactions may greatly increase the useful lifetime of cellular proteins. We are presently examining these reactions in humans, mice, nematodes, plants, and bacteria. In each case, we are taking advantage of the particular features of each system - the medical relevance in humans, the usefulness of transgenic mice gene knockouts, the ease of working with the relatively small genomes of Arabidopsis, Caenorhabditis elegans, and Escherichia coli. We have also been interested in understanding the role of protein carboxyl methyltransferases that may be involved in modulating the function of other regulatory proteins. In 1993 we discovered that protein phosphatase 2A, the major dephosphorylating enzyme involved in both metabolism and cell cycle control, was itself methylated at its C-terminal leucine residue. Using the yeast Saccharomyces cerevisiae as an experimental system, we are taking both biochemical and genetic approaches to rationalize this methylation reaction. Finally, again using yeast as a model system, we are searching for novel methyltransferases that may regulate as yet unknown pathways.
Biography

Steven Clarke has been on the faculty of the UCLA Department of Chemistry and Biochemistry since 1978. He is currently a Distinguished Professor of Biochemistry and Director of the UCLA Cellular and Molecular Biology Training Program. He was born in Los Angeles and attended public schools in Altadena and Pasadena, California. He did his undergraduate work at Pomona College in Claremont, majoring in Chemistry and Zoology. During this time, he did undergraduate research at the UCLA Brain Research Institute with Dr. James E. Skinner and Professor Donald Lindsley on neural mechanisms of attention. He was also an NIH fellow in the laboratory of Dr. Peter Mitchell at Glynn Research Laboratories in Bodmin, England studying mitochondrial amino acid transport. He obtained his PhD in Biochemistry and Molecular Biology at Harvard University working as an NSF Fellow with Professor Guido Guidotti on membrane protein-detergent interactions and the identification of the major rat liver mitochondrial polypeptides as enzymes of the urea cycle. He returned to California to do postdoctoral work as a Miller Fellow at the University of California, Berkeley, with Professor Dan Koshland, identifying membrane receptors for bacterial chemotaxis. His research at UCLA has focused on roles of novel protein methyltransferases in aging and biological regulation highlighted by discoveries of the protein L-isoaspartyl repair methyltransferase, the isoprenylcysteine protein methyltransferase, and the protein phosphatase 2A methyltransferase. He has been a visiting scholar at Princeton University (1986-87), the University of Washington (2004-2005), and Vanderbilt University (2015).

Publications
Petrossian, T. C., and Clarke, S. G. Bioinformatic Identification of Novel Methyltransferases. Epigenomics. 2009; 1: 163-175.
Vinci Chris R, Clarke Steven G Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. The Journal of biological chemistry. 2010; 285(27): 20526-31.
Webb Kristofor J, Lipson Rebecca S, Al-Hadid Qais, Whitelegge Julian P, Clarke Steven G Identification of protein N-terminal methyltransferases in yeast and humans. Biochemistry. 2010; 49(25): 5225-35.
Vinci Chris R, Clarke Steven G Yeast, plants, worms, and flies use a methyltransferase to metabolize age-damaged (R,S)-AdoMet, but what do mammals do?. Rejuvenation research. 2010; 13(2-3): 362-4.
Petrossian Tanya, Clarke Steven Bioinformatic Identification of Novel Methyltransferases. Epigenomics. 2009; 1(1): 163-175.
Khare Shilpi, Gomez Tara, Linster Carole L, Clarke Steven G Defective responses to oxidative stress in protein l-isoaspartyl repair-deficient Caenorhabditis elegans. Mechanisms of ageing and development. 2009; 130(10): 670-80.
Lakowski Ted M, Zurita-Lopez Cecilia, Clarke Steven G, Frankel Adam Approaches to measuring the activities of protein arginine N-methyltransferases. Analytical biochemistry. 2009; .
Fisk John C, Sayegh Joyce, Zurita-Lopez Cecilia, Menon Sarita, Presnyak Vladimir, Clarke Steven G, Read Laurie K A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. The Journal of biological chemistry. 2009; 284(17): 11590-600.
Petrossian Laurie K, Clarke Laurie K Multiple motif scanning to identify methyltransferases from the yeast proteome. Molecular & cellular proteomics : MCP. 2009; 284(17): .
Bedford Mark T, Clarke Steven G Protein arginine methylation in mammals: who, what, and why. Molecular cell. 2009; 33(1): 1-13.
Gomez Tara A, Banfield Kelley L, Clarke Steven G The protein L-isoaspartyl-O-methyltransferase functions in the Caenorhabditis elegans stress response. Mechanisms of ageing and development. 2008; 129(12): 752-8.
Linster Carole L, Clarke Steven G L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends in plant science. 2008; 13(11): 567-73.
Sayegh Joyce, Clarke Steven G Hsl7 is a substrate-specific type II protein arginine methyltransferase in yeast. Biochem. Biophys. Res. Commun. 2008; 372(4): 811-5.
Banfield Kelley L, Gomez Tara A, Lee Wendy, Clarke Steven, Larsen Pamela L Protein-repair and hormone-signaling pathways specify dauer and adult longevity and dauer development in Caenorhabditis elegans. The journals of gerontology. Series A, Biological sciences and medical sciences. 2008; 63(8): 798-808.
Dumlao Darren S, Hertz Nicholas, Clarke Steven Secreted 3-isopropylmalate methyl ester signals invasive growth during amino acid starvation in Saccharomyces cerevisiae. Biochemistry. 2008; 47(2): 698-709.
Sayegh Joyce, Webb Kristofor, Cheng Donghang, Bedford Mark T, Clarke Steven G Regulation of protein arginine methyltransferase 8 (PRMT8) activity by its N-terminal domain. J. Biol. Chem. 2007; 282(50): 36444-53.
Gomez Tara A, Clarke Steven G Autophagy and insulin/TOR signaling in Caenorhabditis elegans pcm-1 protein repair mutants. Autophagy. 2007; 3(4): 357-9.
Linster Carole L, Gomez Tara A, Christensen Kathryn C, Adler Lital N, Young Brian D, Brenner Charles, Clarke Steven G Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J. Biol. Chem. 2007; 282(26): 18879-85.
Vinci Chris R, Clarke Steven G Recognition of age-damaged (R,S)-adenosyl-L-methionine by two methyltransferases in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2007; 282(12): 8604-12.
Gomez Tara A, Banfield Kelley L, Trogler Dorothy M, Clarke Steven G The L-isoaspartyl-O-methyltransferase in Caenorhabditis elegans larval longevity and autophagy. Developmental biology. 2007; 303(2): 493-500.
Farrar Christine E, Huang Christine S, Clarke Steven G, Houser Carolyn R Increased cell proliferation and granule cell number in the dentate gyrus of protein repair-deficient mice. The Journal of comparative neurology. 2005; 493(4): 524-37.
Porras-Yakushi Tanya R, Whitelegge Julian P, Miranda Tina Branscombe, Clarke Steven A novel SET domain methyltransferase modifies ribosomal protein Rpl23ab in yeast. The Journal of biological chemistry. 2005; 280(41): 34590-8.
Lee Jaeho, Sayegh Joyce, Daniel Jeremy, Clarke Steven, Bedford Mark T PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. The Journal of biological chemistry. 2005; 280(38): 32890-6.
Farrar Christine, Houser Carolyn R, Clarke Steven Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice. Aging cell. 2005; 4(1): 1-12.
Miranda Tina Branscombe, Miranda Mark, Frankel Adam, Clarke Steven PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. The Journal of biological chemistry. 2004; 279(22): 22902-7.
Clarke Steven Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing research reviews. 2003; 2(3): 263-85.
Mackay Kennen B, Tu Yiping, Young Stephen G, Clarke Steven G Circumventing Embryonic Lethality with Lcmt1 Deficiency: Generation of Hypomorphic Lcmt1 Mice with Reduced Protein Phosphatase 2A Methyltransferase Expression and Defects in Insulin Signaling. PloS one. 2013; 8(6): e65967.
Khare Shilpi, Linster Carole L, Clarke Steven G The interplay between protein L-isoaspartyl methyltransferase activity and insulin-like signaling to extend lifespan in Caenorhabditis elegans. PloS one. 2011; 6(6): e20850.
Patananan Alexander N, Palmer Jonathan M, Garvey Graeme S, Keller Nancy P, Clarke Steven G A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. The Journal of biological chemistry. 2013; 288(20): 14032-45.
Clarke Steven G Protein methylation at the surface and buried deep: thinking outside the histone box. Trends in biochemical sciences. 2013; 38(5): 243-52.
Villa Sarah T, Xu Qilong, Downie A Bruce, Clarke Steven G Arabidopsis Protein Repair L-Isoaspartyl Methyltransferases: Predominant Activities at Lethal Temperatures. Physiologia plantarum. 2006; 128(4): 581-592.
Young Brian D, Weiss David I, Zurita-Lopez Cecilia I, Webb Kristofor J, Clarke Steven G, McBride Anne E Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry. 2012; 51(25): 5091-104.
Zurita-Lopez Cecilia I, Sandberg Troy, Kelly Ryan, Clarke Steven G Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues. The Journal of biological chemistry. 2012; 287(11): 7859-70.
MacKay Kennen B, Lowenson Jonathan D, Clarke Steven G Wortmannin reduces insulin signaling and death in seizure-prone Pcmt1-/- mice. PloS one. 2012; 7(10): e46719.
Castro Paola V, Khare Shilpi, Young Brian D, Clarke Steven G Caenorhabditis elegans battling starvation stress: low levels of ethanol prolong lifespan in L1 larvae. PloS one. 2012; 7(1): e29984.
Adler Lital N, Gomez Tara A, Clarke Steven G, Linster Carole L A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals. The Journal of biological chemistry. 2011; 286(24): 21511-23.
Webb Kristofor J, Al-Hadid Qais, Zurita-Lopez Cecilia I, Young Brian D, Lipson Rebecca S, Clarke Steven G The ribosomal l1 protuberance in yeast is methylated on a lysine residue catalyzed by a seven-beta-strand methyltransferase. The Journal of biological chemistry. 2011; 286(21): 18405-13.
Patananan Alexander N, Capri Joseph, Whitelegge Julian P, Clarke Steven G Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae. The Journal of biological chemistry. 2014; 289(24): 16936-53.
Feng You, Maity Ranjan, Whitelegge Julian P, Hadjikyriacou Andrea, Li Ziwei, Zurita-Lopez Cecilia, Al-Hadid Qais, Clark Amander T, Bedford Mark T, Masson Jean-Yves, Clarke Steven G Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. The Journal of biological chemistry. 2013; 288(52): 37010-25.
Warmack Rebeccah A, Mansilla Eduardo, Goya Rodolfo G, Clarke Steven G Racemized and Isomerized Proteins in Aging Rat Teeth and Eye Lens. Rejuvenation research. 2016; 19(4): 309-17.
Clarke Steven G 16 Inhibition of mammalian protein methyltransferases by 5'-methylthioadenosine (MTA): A mechanism of action of dietary same?. The Enzymes. 2006; 24(2): 467-93.
Yang Hongqian, Lowenson Jonathan D, Clarke Steven, Zubarev Roman A Brain proteomics supports the role of glutamate metabolism and suggests other metabolic alterations in protein l-isoaspartyl methyltransferase (PIMT)-knockout mice. Journal of proteome research. 2013; 12(10): 4566-76.
Lissina Elena, Weiss David, Young Brian, Rella Antonella, Cheung-Ong Kahlin, Del Poeta Maurizio, Clarke Steven G, Giaever Guri, Nislow Corey A novel small molecule methyltransferase is important for virulence in Candida albicans. ACS chemical biology. 2013; 8(12): 2785-93.
Lowenson Jonathan D, Shmanai Vadim V, Shklyaruck Denis, Clarke Steven G, Shchepinov Mikhail S Deuteration protects asparagine residues against racemization. Amino acids. 2016; 19(4): .
Shen-Miller J, Lindner Petra, Xie Yongming, Villa Sarah, Wooding Kerry, Clarke Steven G, Loo Rachel R O, Loo Joseph A Thermal-stable proteins of fruit of long-living Sacred Lotus Nelumbo nucifera Gaertn var. China Antique. Tropical plant biology. 2013; 6(2-3): .
Sherkhanov Saken, Korman Tyler P, Clarke Steven G, Bowie James U Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Scientific reports. 2016; 6(4): 24239.
Nayak Nihar R, Putnam Andrea A, Addepalli Balasubrahmanyam, Lowenson Jonathan D, Chen Tingsu, Jankowsky Eckhard, Perry Sharyn E, Dinkins Randy D, Limbach Patrick A, Clarke Steven G, Downie A Bruce An Arabidopsis ATP-dependent, DEAD-box RNA helicase loses activity upon IsoAsp formation but is restored by PROTEIN ISOASPARTYL METHYLTRANSFERASE. The Plant cell. 2013; 25(7): 2573-86.
Al-Hadid Qais, Roy Kevin, Chanfreau Guillaume, Clarke Steven G Methylation of yeast ribosomal protein Rpl3 promotes translational elongation fidelity. RNA (New York, N.Y.). 2016; 22(4): 489-98.
Dai Shujia, Ni Wenqin, Patananan Alexander N, Clarke Steven G, Karger Barry L, Zhou Zhaohui Sunny Integrated proteomic analysis of major isoaspartyl-containing proteins in the urine of wild type and protein L-isoaspartate O-methyltransferase-deficient mice. Analytical chemistry. 2013; 85(4): 2423-30.
Debler Erik W, Jain Kanishk, Warmack Rebeccah A, Feng You, Clarke Steven G, Blobel Günter, Stavropoulos Pete A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113(8): 2068-73.
Yang Mei-Ling, Gee Alaric J P, Gee Renelle J, Zurita-Lopez Cecilia I, Khare Shilpi, Clarke Steven G, Mamula Mark J Lupus autoimmunity altered by cellular methylation metabolism. Autoimmunity. 2013; 46(1): 21-31.
Al-Hadid Qais, White Jonelle, Clarke Steven Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation. Biochemical and biophysical research communications. 2016; 470(3): 552-7.
Dhar Surbhi, Vemulapalli Vidyasiri, Patananan Alexander N, Huang Grace L, Di Lorenzo Alessandra, Richard Stephane, Comb Michael J, Guo Ailan, Clarke Steven G, Bedford Mark T Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Scientific reports. 2013; 3(1): 1311.
Fu Xudong, Chin Randall M, Vergnes Laurent, Hwang Heejun, Deng Gang, Xing Yanpeng, Pai Melody Y, Li Sichen, Ta Lisa, Fazlollahi Farbod, Chen Chuo, Prins Robert M, Teitell Michael A, Nathanson David A, Lai Albert, Faull Kym F, Jiang Meisheng, Clarke Steven G, Cloughesy Timothy F, Graeber Thomas G, Braas Daniel, Christofk Heather R, Jung Michael E, Reue Karen, Huang Jing 2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell metabolism. 2015; 22(3): 508-15.
Hadjikyriacou Andrea, Yang Yanzhong, Espejo Alexsandra, Bedford Mark T, Clarke Steven G Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2. The Journal of biological chemistry. 2015; 290(27): 16723-43.
Yang Yanzhong, Hadjikyriacou Andrea, Xia Zheng, Gayatri Sitaram, Kim Daehoon, Zurita-Lopez Cecilia, Kelly Ryan, Guo Ailan, Li Wei, Clarke Steven G, Bedford Mark T PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nature communications. 2015; 6(27): 6428.
Patananan Alexander N, Budenholzer Lauren M, Pedraza Maria E, Torres Eric R, Adler Lital N, Clarke Steven G The invertebrate Caenorhabditis elegans biosynthesizes ascorbate. Archives of biochemistry and biophysics. 2015; 569(27): 32-44.
Patananan Alexander Nikolich, Budenholzer Lauren Michelle, Eskin Ascia, Torres Eric Rommel, Clarke Steven Gerard Ethanol-induced differential gene expression and acetyl-CoA metabolism in a longevity model of the nematode Caenorhabditis elegans. Experimental gerontology. 2015; 61(27): 20-30.
Dzialo Maria C, Travaglini Kyle J, Shen Sean, Loo Joseph A, Clarke Steven G A new type of protein lysine methyltransferase trimethylates Lys-79 of elongation factor 1A. Biochemical and biophysical research communications. 2014; 455(3-4): 382-9.
Feng You, Hadjikyriacou Andrea, Clarke Steven G Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop. The Journal of biological chemistry. 2014; 289(47): 32604-16.
Dzialo Maria C, Travaglini Kyle J, Shen Sean, Roy Kevin, Chanfreau Guillaume F, Loo Joseph A, Clarke Steven G Translational roles of elongation factor 2 protein lysine methylation. The Journal of biological chemistry. 2014; 289(44): 30511-24.
Al-Hadid Qais, Roy Kevin, Munroe William, Dzialo Maria C, Chanfreau Guillaume F, Clarke Steven G Histidine methylation of yeast ribosomal protein Rpl3p is required for proper 60S subunit assembly. Molecular and cellular biology. 2014; 34(15): 2903-16.
Jain Kanishk, Warmack Rebeccah A, Debler Erik W, Hadjikyriacou Andrea, Stavropoulos Peter, Clarke Steven G Protein Arginine Methyltransferase Product Specificity is Mediated by Distinct Active-Site Architectures. The Journal of biological chemistry. 2016; .
Young Stephen G, Clarke Steven G, Bergoc Martin O, Phillips Mark, Fong Loren G 10 Genetic approaches to understanding the physiologic importance of the carboxyl methylation of isoprenylated proteins. The Enzymes. 2006; 24(3): 273-301.
Stetler April, Winograd Claudia, Sayegh Joyce, Cheever Anne, Patton Erin, Zhang Xing, Clarke Steven, Ceman Stephanie Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp. Human molecular genetics. 2006; 15(1): 87-96.
Linster Carole L, Adler Lital N, Webb Kristofor, Christensen Kathryn C, Brenner Charles, Clarke Steven G A second GDP-L-galactose phosphorylase in arabidopsis en route to vitamin C. Covalent intermediate and substrate requirements for the conserved reaction. The Journal of biological chemistry. 2008; 283(27): 18483-92.
Hadjikyriacou Andrea, Clarke Steven G Caenorhabditis elegans PRMT-7 and PRMT-9 Are Evolutionarily Conserved Protein Arginine Methyltransferases with Distinct Substrate Specificities. Biochemistry. 2017; 56(20): 2612-2626.
Miranda Tina Branscombe, Webb Kristofor J, Edberg Dale D, Reeves Raymond, Clarke Steven Protein arginine methyltransferase 6 specifically methylates the nonhistone chromatin protein HMGA1a. Biochemical and biophysical research communications. 2005; 336(3): 831-5.
Alfaro Joshua F, Gillies Laura A, Sun He G, Dai Shujia, Zang Tianzhu, Klaene Joshua J, Kim Byung Ju, Lowenson Jonathan D, Clarke Steven G, Karger Barry L, Zhou Zhaohui Sunny Chemo-enzymatic detection of protein isoaspartate using protein isoaspartate methyltransferase and hydrazine trapping. Analytical chemistry. 2008; 80(10): 3882-9.
Lipson Rebecca S, Clarke Steven G S-adenosylmethionine-dependent protein methylation in mammalian cytosol via tyrphostin modification by catechol-O-methyltransferase. The Journal of biological chemistry. 2007; 282(42): 31094-102.
Kafková Lucie, Debler Erik W, Fisk John C, Jain Kanishk, Clarke Steven G, Read Laurie K The Major Protein Arginine Methyltransferase in Trypanosoma brucei Functions as an Enzyme-Prozyme Complex. The Journal of biological chemistry. 2017; 292(6): 2089-2100.
Pasternack Deborah A, Sayegh Joyce, Clarke Steven, Read Laurie K Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei. Eukaryotic cell. 2007; 6(9): 1665-81.
Caslavka Zempel Katelyn E, Vashisht Ajay A, Barshop William D, Wohlschlegel James A, Clarke Steven G Determining the Mitochondrial Methyl Proteome in Saccharomyces cerevisiae using Heavy Methyl SILAC. Journal of proteome research. 2016; 15(12): 4436-4451.
Clarke Steven Gerard HIV protease inhibitors and nuclear lamin processing: getting the right bells and whistles. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(35): 13857-8.
Zou Yan, Webb Kristofor, Perna Avi D, Zhang Qingchun, Clarke Steven, Wang Yinsheng A mass spectrometric study on the in vitro methylation of HMGA1a and HMGA1b proteins by PRMTs: methylation specificity, the effect of binding to AT-rich duplex DNA, and the effect of C-terminal phosphorylation. Biochemistry. 2007; 46(26): 7896-906.
Urzica Eugen I, Casero David, Yamasaki Hiroaki, Hsieh Scott I, Adler Lital N, Karpowicz Steven J, Blaby-Haas Crysten E, Clarke Steven G, Loo Joseph A, Pellegrini Matteo, Merchant Sabeeha S Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. The Plant cell. 2012; 24(10): 3921-48.
McBride Anne E, Zurita-Lopez Cecilia, Regis Anthony, Blum Emily, Conboy Ana, Elf Shannon, Clarke Steven Protein arginine methylation in Candida albicans: role in nuclear transport. Eukaryotic cell. 2007; 6(7): 1119-29.
Urzica Eugen I, Adler Lital N, Page M Dudley, Linster Carole L, Arbing Mark A, Casero David, Pellegrini Matteo, Merchant Sabeeha S, Clarke Steven G Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. The Journal of biological chemistry. 2012; 287(17): 14234-45.
Lissina Elena, Young Brian, Urbanus Malene L, Guan Xue Li, Lowenson Jonathan, Hoon Shawn, Baryshnikova Anastasia, Riezman Isabelle, Michaut Magali, Riezman Howard, Cowen Leah E, Wenk Markus R, Clarke Steven G, Giaever Guri, Nislow Corey A systems biology approach reveals the role of a novel methyltransferase in response to chemical stress and lipid homeostasis. PLoS genetics. 2011; 7(10): e1002332.
Porras-Yakushi Tanya R, Whitelegge Julian P, Clarke Steven Yeast ribosomal/cytochrome c SET domain methyltransferase subfamily: identification of Rpl23ab methylation sites and recognition motifs. The Journal of biological chemistry. 2007; 282(17): 12368-76.
Rust Heather L, Zurita-Lopez Cecilia I, Clarke Steven, Thompson Paul R Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1. Biochemistry. 2011; 50(16): 3332-45.
Butler Jill S, Zurita-Lopez Cecilia I, Clarke Steven G, Bedford Mark T, Dent Sharon Y R Protein-arginine methyltransferase 1 (PRMT1) methylates Ash2L, a shared component of mammalian histone H3K4 methyltransferase complexes. The Journal of biological chemistry. 2011; 286(14): 12234-44.
Vigneswara Vasanthy, Lowenson Jonathan D, Powell Claire D, Thakur Matthew, Bailey Kevin, Clarke Steven, Ray David E, Carter Wayne G Proteomic identification of novel substrates of a protein isoaspartyl methyltransferase repair enzyme. The Journal of biological chemistry. 2006; 281(43): 32619-29.
Porras-Yakushi Tanya R, Whitelegge Julian P, Clarke Steven A novel SET domain methyltransferase in yeast: Rkm2-dependent trimethylation of ribosomal protein L12ab at lysine 10. The Journal of biological chemistry. 2006; 281(47): 35835-45.
Chen Tingsu, Nayak Nihar, Majee Susmita Maitra, Lowenson Jonathan, Schäfermeyer Kim R, Eliopoulos Alyssa C, Lloyd Taylor D, Dinkins Randy, Perry Sharyn E, Forsthoefel Nancy R, Clarke Steven G, Vernon Daniel M, Zhou Zhaohui Sunny, Rejtar Tomas, Downie A Bruce Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning. The Journal of biological chemistry. 2010; 285(48): 37281-92.
Yang Mei-Ling, Doyle Hester A, Gee Renelle J, Lowenson Jonathan D, Clarke Steven, Lawson Brian R, Aswad Dana W, Mamula Mark J Intracellular protein modification associated with altered T cell functions in autoimmunity. Journal of immunology (Baltimore, Md. : 1950). 2006; 177(7): 4541-9.
Lipson Rebecca S, Webb Kristofor J, Clarke Steven G Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae. Biochemical and biophysical research communications. 2010; 391(4): 1658-62.
Webb Kristofor J, Laganowsky Arthur, Whitelegge Julian P, Clarke Steven G Identification of two SET domain proteins required for methylation of lysine residues in yeast ribosomal protein Rpl42ab. The Journal of biological chemistry. 2008; 283(51): 35561-8.
Miranda Tina Branscombe, Sayegh Joyce, Frankel Adam, Katz Jonathan E, Miranda Mark, Clarke Steven Yeast Hsl7 (histone synthetic lethal 7) catalyses the in vitro formation of omega-N(G)-monomethylarginine in calf thymus histone H2A. The Biochemical journal. 2006; 395(3): 563-70.