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We describe a novel approach, based on ideal observer analysis, for measuring the ability of human 
observers to use image information for 3D object perception. We compute the statistical efficiency of 
subjects relative to an ideal observer for a 3D object classification task. After training to 11 different 
views of a randomly shaped thick wire object, subjects were asked which of a pair of noisy views of 
the object best matched the learned object. Efficiency relative to the actual information in the stimuli 
can be as high as 20%. Increases in object regularity (e.g. symmetry) lead to increases in the efficiency 
with which novel views of an object could be classified. Furthermore, such increases in regularity also 
lead to decreases in the effect of viewpuint on classification efficiency. Human statistical efficiencies 
relative to a 2D ideal observer exceeded 100%, thereby excluding all models which are sub-optimal 
relative to the 2D ideal. 
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I. INTRODUCTION 

Accurate object recognition and classification is crucial 
for humans and animals to successfully interact with 
their environment. These functions include a number of 
aspects of object perception: The determination of what 
category an object fits into, how well it fits into a selected 
category, and the discrimination of members of the same 
category from one another. Though much research, both 
computational and experimental, has been done in the 
area, the nature of the brain processes and represen- 
tations subserving object recognition remain an area of 
strong debate. 

An important first step in understanding human 
object recognition is to understand the functional 
aspects of human performance, i.e. to develop a 
computational theory of how the human visual system 
performs the various tasks associated with object recog- 
nition. Such a theory will provide fundamental con- 
straints on models of the architecture and processing 
characteristics of the recognition system(s) built into 
human vision. As suggested by Tarr (1992), compu- 
tational questions about object recognition can be 
classified into a number of roughly independent cat- 
egories: (I) the spatial dimensions (2D or 3D) which 
characterize object representations; (2) the frame of 
reference or coordinate system in which an object 

is specified, e.g. viewpoint dependent vs viewpoint 
independent; (3) the nature of object component 
parts; and (4) the spatial relations between these parts. 
To this list we add a fifth: (5) the regularities in object 
geometry (e.g. symmetry) which are taken advantage of  
in both object representations and the processes which 
match image data to these object representations for 
recognition. 

In this paper, we present a novel experimental para- 
digm, based on ideal observer theory, to address some 
of the issues posed above. The development and appli- 
cation of the ideal observer paradigm to a problem in 
high-level perception such as object recognition is a 
major part of the focus of the paper. The approach 
provides a formal means for making strong inferences 
based on the quantitative performance of subjects in an 
experimental task. The particular empirical questions we 
will investigate are: do internal models of objects and the 
matching processes subserving recognition incorporate 
only 2D, image-based information or do they include 
3D descriptions? Do object representations and the 
matching process make use of special regularities in the 
shapes of objects such as symmetry? Is object classifi- 
cation performance better for previously seen views 
of an object than for novel views (i.e. is it viewpoint 
dependent)? 
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objects based on metric differences in shape (the differ- 
ence between a football and a basketball).* The distinc- 
tion is useful for two reasons. One is that an object's 
functional utility to an organism is often determined by 
its shape so that the distinction between qualitative and 
metric differences in shape often maps nicely onto a 
distinction between qualitative and quantitative differ- 
ences in functional properties of  objects. A second is 
that qualitative differences in object shape are often 
reflected in invariant qualitative differences in their 
images (e.g. topology of  object boundary contours), 
while metric differences are generally reflected in 
viewpoint-dependent metric differences in the images 
(Biederman, 1987). This opens the possibility that quite 
different strategies might be used for the different levels 
of  object categorization and discrimination (but see 
Edelman, 1991). 

We use an experimental task in which subjects make 
classification judgments based on metric differences 
in object shapes; therefore the results reflect those 
aspects of  the human visual system which subserve 
metric object recognition. In this paper, we will use the 
term object recognition to refer to the classification and 
discrimination of objects based on their metric shape 
properties. 

1.2. Computational Theory of 3D Object Recognition 
and Discrimination 

A system for recognizing, classifying, or otherwise 
comparing image information about objects with 
internal models of  objects in memory must have three 
components,  as diagrammed in Fig. 1. These include a 
process which produces some representation of  the input 
data, an internal model, and a process by which the 
input and internal models are matched. Multiple stages 
of  such systems are possible [e.g. a hierarchy of qualitat- 
ive and quantitative matching processes (Biederman, 
1987)], and the discussion to follow generalizes to such 
multiple stage processes. Most  theories of  human object 
recognition do not consider the actual process used for 
coding the input representation (involving, for example, 
segmentation and feature extraction), but start with 

*The distinction between qualitative and metric differences in object 
shape is not entirely clear cut. In order to objectively make such 
a distinction, we would have to fall back on mathematics, e.g. by 
equating qualitative with topological. Ultimately, for human object 
recognition, it is a psychological question, and relies on an 
assumption that the perceptual system represents some object 
attributes categorically and others along approximately continu- 
ous, ordered scales. The qualitative/metric distinction is similar to 
the basic level/subordinate level distinction often made for different 
types of linguistic categories (Rosch, Mervis, Gray, Johnson & 
Boyes-Braem, 1976). While the latter distinction is operationally 
(and somewhat fuzzily) defined by the psychological characteristic 
that basic level categories are ones for whom names readily come 
to mind, the two types of categories may often also be distinguished 
by the fact that categories at the basic level differ in the types of 
features they have, while those at the subordinate level differ in the 
values assigned to the features. 

tWith enough stored views, some non-rigid transformations (e.g. 
non-rigid affine transformations) of objects can also be allowed in 
the matching process. 

Image 
coatag 

r 
i 

¥ 

i I 
I I 
I I 
I I 

FIGURE 1. Schematic diagram of a general processing system for 
comparing image data with internal object representations for pur- 
poses of recognition. The components of the system outlined in the 
dashed box are those considered as comprising an object recognition 

system. 

a specification of  the representation itself. We will, 
by and large, follow this tradition here and we take a 
basic recognition system to contain three components,  
the input representation, the internal model and the 
matching process. In all that follows, we will avoid 
the problem of  self-occlusion and assume that none of 
the views obscure any of  the feature points. In principle, 
one can deal with the problem of self-occluding parts by 
restricting the analysis to each node of  an object's aspect 
graph (Koenderink & van Doorn,  1976), i.e. one applies 
the analysis to sets of  views that do not lead to qualitat- 
ive changes in the object's image. In practice, self- 
occlusion is a non-trivial issue because the computat ion 
of an object's aspect graph can be difficult (Plantinga & 
Dyer, 1990). 

Object recognition theories differ in the characteristics 
assigned to each of  the three components of  the recog- 
nition process. The broadest dimensions along which the 
models differ are in whether the input and internal object 
models are assumed to be 2D representations of  the 
images of  objects (e.g. 2D positions of  object features) 
or 3D representations of  the objects' shapes. Strongly 
related to this is a similar distinction made about  the 
matching process. Does the matching process incorpor- 
ate 3D knowledge about  objects which is not explicitly 
included in the internal representation? Importantly,  
from the point of  view of  absolute system performance, 
the above two distinctions may be confounded. Consider 
the following two architectures. In one, internal object 
models are 3D representations, the input is a 2D descrip- 
tion of  one view of  an object, and the matching process 
checks the input against all possible views of  its stored 
object models in order to determine which object is being 
viewed. In the other, the internal representations are sets 
of  2D descriptions of  different views of  objects, the input 
is again a 2D description of  a view of  an object, and the 
matching process has knowledge of the constrained 
nature of  views of  rigid objects;t namely, that all views 
fall on a well-defined hyper-surface in the space of 2D 
representations which is fully determined by just two 
views (Poggio & Vetter, 1992; Ullman & Basri, 1989). 
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Since this constraint means that the views which the 
system has stored for each object fully determine the 
legal views of the object, just as a 3D object model 
would, a system storing object models as 2D view 
descriptions in conjunction with an appropriate match- 
ing process could perform as well as one with 3D object 
models. We would say that such a system would have 3D 
information incorporated into the matching process. 
Keeping this consideration in mind, we distinguish 
between four types of object recognition systems, each 
of which would give qualitatively different performance: 
(1) 2D/2D systems, in which both internal object models 
and input data are 2D descriptions of specific views 
of objects, and in which the matching system does 
not know the constraints relating one view of a rigid 
object to another, but simply matches novel views to 
stored views; (2) 3D/2D systems, in which the input is 
a 2D description of an image and either the internal 
object models are 3D descriptions of an object's shape 
or 3D constraints are built into the matching process; 
(3) 2D/3D systems, in which the internal models are 
2D descriptions of learned views of objects, and the 
input is a 3D description of object shape, inferred from 
the image data; and (4) 3D/3D systems, in which both 
input and internal representations are 3D descriptions of 
object shape. 

A second distinction which one can make about both 
the representations and the matching process used in an 
object recognition system is whether they are viewpoint 
dependent or not (Bfilthoff & Edelman, 1992; Tarr & 
Pinker, 1989). Naturally, all 2D representations are 
themselves viewpoint dependent, but, as described in the 
example above, having 2D internal models by itself does 
not necessarily lead to viewpoint dependent perform- 
ance, if the matching process does a sufficiently good job 
of determining from the stored views the constraint 
surface relating all possible views of an object. Viewpoint 
dependent performance arises from how the matching 
process compares input data to stored object represen- 
tations. The 2D/2D system described above is inherently 
viewpoint dependent, while the others can vary from 
being strongly viewpoint dependent to being completely 
viewpoint independent. In either a 2D/3D or 3D/2D 
system, viewpoint dependence can arise from having a 
viewer-centered object model and a matching process 
whose ability to align the model with the input data 
is limited. This could arise from limits on the possible 
angles of internal rotation or on uncertainty which is 
effectively added by the internal alignment process, 
increasing as the object model is taken through succes- 
sively larger angles in the alignment. This suggests 
that while a finding of viewpoint independence would 
effectively eliminate one class of models, a finding of 
viewpoint dependent performance does not by itself 
distinguish among the different classes of recognition 
system described above. 

A final issue with which we will be concerned is that 
of what types of object regularity the human recognition 
system makes use of in representation or matching. 
Rock and DiVita (1987) have suggested that very irreg- 

ular objects may be represented using 2D image descrip- 
tions and then matched in a straightforward way 
with novel input images, whereas regular (e.g. symmet- 
ric) objects may be represented using a 3D description 
of shape. They suggest that such a dichotomous 
representation/matching scheme could result simply 
from efficiency considerations; namely, that while a 3D 
representation is significantly more efficient for represen- 
tation of a regular object, no such benefits accrue for 
irregular objects, which may be almost as efficiently 
represented as a set of 2D views. Special mechanisms for 
the encoding of regular 3D shapes could also exist as a 
result of the preponderance of symmetric objects in our 
world and the arguably greater functional significance 
of such objects to humans. Another possibility is that 
special mechanisms exist for matching models of regular 
objects to novel views. Poggio and Vetter have shown 
that matching symmetric objects requires less infor- 
mation about an object (fewer stored views) than does 
matching irregular objects and have demonstrated 
the computational (Poggio & Vetter, 1992) and psycho- 
logical (Vetter, Poggio & Bfilthoff, 1994) feasibility of 
mechanisms which incorporate the appropriate con- 
straints. The potential payoffs of having an object 
recognition system designed to take advantage of object 
regularities suggest that the human visual system may 
well incorporate such design strategies. 

A number of experiments using reaction time 
measures have shown differences in the viewpoint depen- 
dency of object recognition performance between 
different types of objects. The time to perform an object 
recognition task for objects constructed from several 
different qualitatively different parts ("geons") is 
not significantly affected by object rotation in depth 
(Biederman & Gerhardstein, 1993), whereas reaction 
time is affected by such rotations for objects built from 
qualitatively similar parts (Gerhardstein, 1992). At this 
point, however, we have few systematic studies of the 
role of object regularity in recognition. It is not clear 
whether there are general forms of object regularity, such 
as symmetry, which reduce the need for multiple views 
in recognition or whether it is the presence of parts with 
non-accidental contrasts. Although we do not address 
this specific question here, we will investigate the issue of 
whether object regularity changes how well subjects 
recognize objects and whether it changes the viewpoint 
dependency of overall performance on a recognition 
task. 

1.3. Models of Object Recognition 
A large assortment of object recognition models have 

been developed over the last 30 yr. We will not attempt 
to review all of them here, but rather focus on a 
few recent proposals that are most directly applicable 
to the problem of metric object recognition. Models 
such as Biederman's recognition-by-components model 
(Biederman, 1987) are directed more toward qualitative 
recognition. We describe two types of model, those 
which incorporate alignment mechanisms and those 
based on associative learning of images and object 
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representations. The two types of model are not mutu- 
ally exclusive, but the distinction forms a working 
organization for the discussion. We will not present 
critiques of the different types of mode, but rather focus 
on categorizing the models within the representation- 
based taxonomy presented above. 

Alignment schemes, which have been generally 
characterized by Huttenlocher and Ullman (Hutten- 
locher & Ullman, 1987; Ullman, 1989), can fit into any 
of the four classes of models, depending on the nature 
of the representations assumed. In alignment models, 
either the input is first aligned with the internal object 
models, i.e. is transformed (rotated, scaled, etc.) until it 
best matches each of the models; or the object models are 
aligned until they best match the input. After alignment, 
the input is matched to the object models, and the model 
which it best matches is chosen for the object categoriz- 
ation. That one or the other of the input and internal 
representations is viewpoint dependent is explicitly 
assumed in alignment models (hence the need for an 
alignment process). In fact, most alignment type models 
use viewpoint dependent 3D object models and 2D 
image inputs, thus are of the 3D/2D type (Huttenlocher 
& Ullman, 1987). 

Associative neural network models have been applied 
to a range of problems in 2D pattern recognition. 
These models have typically been developed to deal 
with invariant recognition over 2D transformations and 
would thus fall within the 2D/2D class of systems 
(Anderson, Silverstein, Ritz & Jones, 1977; Bienenstock 
& Von der Malsburg, 1987; Kohonen, 1978). Only 
recently have there been associative learning models that 
attempt to handle rotation in depth (Poggio & Edelman, 
1990). In Poggio and Edelman's generalized radial basis 
function (GRBF) model, multiple views of an object are 
associated with a canonical view of the object. When a 
new view of an object is presented to the system, the 
system transforms it into a representation which is then 
matched to the learned canonical view and is accepted 
as being a view of the object based on the degree of fit 
between the reconstructed view and the canonical view. 
The learned transformation has built into it both the 
object models learned (the training views) and the pro- 
cess for matching them to new views. The GRBF model, 
as it has been applied to object recognition, uses 2D 
input representations and appears to use 2D internal 
models, as it transforms the input to a new view of an 
object. However, we note that the nature of the output 
representation is of little importance to the model (see 
Appendix D), and the internal model should most 
naturally be considered to be the learned parameters 
of the network. Since the system essentially learns to 
approximate the mapping from a wide range of views 
to the same output, it effectively is approximating 
the constraint surface relating views of an object to one 
another. The distinction between representation and 
process is lost in an associative system like the GRBF 
model, so that we cannot neatly delineate whether 3D 
information is contained in the representation or the 
matching process, however it is clear that 3D infor- 

mation is contained in the system, leading us to classify 
it as a 3D/2D system. 

2. THE IDEAL OBSERVER APPROACH: 
MEASURING EFFICIENCIES FOR HUMAN 

OBJECT RECOGNITION 

We are particularly interested in designing exper- 
iments geared toward answering questions about the 
computational aspects of high-level human visual pro- 
cessing, such as what information does the visual system 
use to perform a task, what internal representations does 
it use and what general processing strategies does it use? 
A number of approaches are typically applied to the 
psychophysical investigation of these questions, but we 
can broadly categorize them into two classes: those 
looking at how long it takes subjects to perform a 
task (reaction time studies) and those looking at 
how well subjects perform a task (e.g. measuring per- 
centage correct, discrimination thresholds, etc.). The 
former converts hypotheses about system architec- 
ture, representation schemes, etc. into hypotheses 
about the time-course of performance for a task by 
making assumptions about the temporal nature of visual 
system processing. The latter class of experimental para- 
digms tests hypotheses about overall system perform- 
ance. In this discussion, we will focus on the latter 
approach. 

Among the paradigms based on measuring overall 
performance, we can distinguish between two types. 
In one approach, theories about the computational 
aspect of a perceptual function such as object recog- 
nition are translated into hypotheses about the qualitat- 
ive behavior of subjects on a psychophysical task. 
In particular, predictions are made about the relative 
performance of subjects for different classes of stimuli or 
for different tasks (e.g. learned vs novel views). A 
common problem with this approach is the lack of a 
"common currency" for comparing performance across 
different stimuli or different tasks. In order to assess 
relative performance, one needs a measure of perform- 
ance which accurately reflects subjects' internal process- 
ing characteristics and constraints. It should not 
confound effects due to such internal processing charac- 
teristics with those due to differences in the information 
available in different classes of stimuli for the perform- 
ance of a task or in the information available for the 
performance of different tasks. It is quite possible that 
the causes of differences in performance across different 
stimuli or tasks (e.g. regular vs irregular objects) are in 
the stimulus, not in the head. 

A second approach to testing theories using overall 
performance on a psychophysical task is to compare 
the performance of particular models to that of human 
subjects. In a recent example of this, Bfilthoff and 
Edelman (1992) compared performance curves on an 
object recognition task as a function of orientation of 
novel views away from learned views with a similar 
performance curve for the GRBF model of recognition. 
They found that the pattern of decreased performance 
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with increasing angular difference between learned view- 
points and test viewpoints was very similar for their 
subjects and the model. Such results, however, do not 
allow us to test what aspects of  the computational theory 
on which the model is based accurately reflect human 
visual processing. Most models, like GRBF,  are con- 
strained both by computational theory and by im- 
plementation constraints, thus their performance is a 
function of  both the computational theories on which 
they are based and the particulars of the implementation 
(e.g. using Gaussian interpolation functions in the case 
of GRBF).  In the example just described, one is left with 
a new problem. What properties of the model give 
it viewpoint dependent performance, and are these 
the same things which give human subjects viewpoint 
dependent performance? 

The ideal observer paradigm speaks to both of  the 
problems described above. It allows one to make quan- 
titative predictions of  performance based on theories 
expressed at the computational level of  description and 
provides a common measure of  performance with which 
to compare subjects' performance across different types 
of stimuli and different tasks. The basic idea behind the 
ideal observer paradigm is that for any psychophysical 
task, an ideal observer can be defined which performs 
the task as well as the stimulus information allows, 
i.e. the ideal observer provides a theoretical ceiling on 
performance, which other observers can approach but 
cannot exceed (Kersten, 1990). Moreover, different ideal 
observers can be built to match different computational 
constraints on a system, e.g. ideal observers can be 
defined for an object recognition task in which one ideal 
has access to a full 3D model of learned objects and the 
other only has access to a set of  learned 2D images of  
an object. These ideals are optimal implementations 
of  different computational theories in the sense of 
giving the best possible absolute performance of any 
implementation of the theories (they may, however, be 
much too slow for practical application). Naturally, if 
subjects perform better than a constrained ideal, then 
one can infer that the computational constraints on that 
ideal are not built in, in their entirety, to the human 
visual system. 

The ideal observer is formulated in terms of  Bayesian 
statistical inference. For  example, in an object recog- 
nition task, an ideal observer would select, from a set of  
candidate object models, the one which is most likely to 
give rise to the input image. In Bayesian terms, it would 
select an object model which maximizes the posterior 
probability: 

P (object)e (image I object) 
e (object I image) = (1) 

P (image) 

*Some very coarse 3D information is available in the stimuli we use 
in the form of occasional occlusions. Such occlusions provide 
relative depth information. Though incorporation of this infor- 
mation would slightly improve the performance of the ideal, 
we think these improvements would be so small as to have no 
significant effect on the interpretation of results. 

where P(objectl image) is the conditional probability 
of  the object given the input image; P (object) is the 
prior probability of  the object; P (image I object) is the 
conditional probability, or likelihood, of the input image 
given the object; and P (image) is the probability of the 
input image. Since the comparison is made across objects 
and P (image) is constant for a fixed input image, we do 
not need to know the distribution of  images. When the 
prior probability, P(object)  is constant, maximizing 
the posterior probability is equivalent to maximum 
likelihood estimation. 

Ideal observers allow one to define a measure of 
the statistical efficiency with which human subjects 
use the information available for performance of psy- 
chophysical tasks (Barlow, 1980). Efficiency gives a 
measure of  performance which is relative to the amount  
of stimulus information available for a task, and as 
such provides a common dimension for comparison 
across different stimuli and different tasks. Typically, 
efficiency is measured in terms of the relative signal-to- 
noise ratios needed by ideal and human observers to 
achieve the same level of performance (noise, as the term 
is used here, refers to stimulus uncertainty, whether it is 
inherent in the task or is artificially induced by the 
addition of  stimulus noise in an experiment). It is 
immediately clear that tasks for which the ideal is perfect 
do not support the computation of useful efficiency 
measures, since for such tasks efficiency is guaranteed to 
be 0, or at best, if humans are also perfect, undefined. 
An important aspect of experimental design within the 
ideal observer paradigm, therefore, is that the visual 
task used have some inherent uncertainty. This uncer- 
tainty can arise naturally due to loss of  3D information 
in the image or can be added artificially in the form 
of  noise added to the stimuli. Both kinds of  uncertainty 
are incorporated in the experimental task described 
below. 

We use ideal observers in two ways in this paper. 
First, we construct an ideal observer for the object 
classification task we use based on the assumption that 
the observer uses only 2D information to perform the 
task. The ideal bases its judgments on a compari- 
son between a stimulus image and a set of  2D learned 
views of  an object; thus, it is the ideal for the 2D/2D 
class of models described in the previous section. If 
subjects are able to attain greater than 100% efficiency 
relative to this 2D/2D ideal, then we can eliminate 
that class of recognition models as possible models for 
the task performed, i.e. we can infer that subjects 
incorporate some 3D knowledge of either the object 
in the stimulus or the object stored in memory, or 
both. Second, we construct an approximation to the 
" t rue" ideal for the task, which provides a measure of 
the best possible performance on the task. This ideal 
serves as an absolute benchmark for performance 
in different conditions of the experiment. The ideal we 
use for this purpose is what we refer to as the 3D/2D 
ideal. It builds up a complete 3D model of a learned 
object from the training views and matches it against 
the 2D images presented in the experiment.* Finally, 
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we derive a 3D/3D ideal observer which not only has 
an accurate 3D internal model of objects, but also is 
able to accurately infer the 3D structure of objects 
in stimulus images. This ideal is a super-ideal, in 
that the 3D information it uses as input data is in 
large part not available to human observers in our 
experiment. It does, however, serve as a bench- 
mark against which to compare the other ideals to 
see how different computational constraints affect 
performance. 

We have noted that absolute differences in sub- 
jects' performance in different experimental con- 
ditions reflect differences both in the information 
content and in the internal processing of the stimuli. 
The differences in efficiency relative to the 3D/2D 
ideal, on the other hand, reflect only differences 
in internal processing of  the stimuli. A particularly 
important consideration in this regard is that 
performance in any recognition task depends on 
the choice of distractors. Effects due to differences in 
distractor sets under different conditions of an exper- 
iment are effectively absorbed in an efficiency measure 
of  performance. Suppose, for example, that in one 
condition the distractor set of objects is more confus- 
able with the object to be recognized than in another 
condition. This might, by itself, lead to worsened 
subject performance in the first condition, however 
the effect would also show up in the performance of 
the ideal observer. If the change in subjects' perform- 
ance was entirely due to the difference in confusability 
of  the distractor set, the relative efficiency of sub- 
jects' performance in the two conditions would remain 
unchanged. 

To compare the performance between human 
and ideal observers experimentally, we have chosen 
3D wire objects (Fig. 2) for our classification task. 
The wires are created by joining a set of  3D vertex 
positions with thick cylindrical wires. In the experiment, 
subjects are asked to decide which of the two images 
of noisy versions of  a learned prototype wire object 
is more similar to the prototype. By noisy wires, we 
mean wires whose vertices have been disturbed by 
uncorrelated positional noise. Four reasons for the use 
of  wire objects in this study are: (1) experiments using 
the same kind of wire objects have been used (Biilthoff 
& Edelman, 1992; Poggio & Edelman, 1990) to support 
a 2D view interpolation theory of object recognition; (2) 
the novel wire objects are suitable for addressing the 
nature of  internal representations and viewpoint depen- 
dency, since we need not worry about subjects' prior 
familiarity with the objects (Rock & DiVita, 1987); (3) 
the corresponding ideal observer models are comput- 
able, since occlusions of the feature points (vertices) are 
negligible; and (4) thick wires can be rendered to appear 
as 3D objects, with the partial occlusion at the vertices 
indicating relative depth. Although the use of thick 
wire objects might limit the generality of our results, 
these objects are nevertheless useful for studying the 
internal representations of  spatial relations between 
object features. 

3. METHODS 

3.1. Stimuli 

The stimulus images were derived from 12 different 
prototype wire objects. The prototypes were divided into 
four types, each consisting of three objects (Fig. 2) 
and which varied in the degree and type of  regularity. 
The four types were: Balls--five small balls randomly 
positioned in 3D; Irregular wires--the three sets of five 
randomly placed balls such as used as objects in the Balls 
category were connected by four straight cylinders of 
the same diameter as the balls, making three thick 
wire objects with the appearance of bent paper-clips; 
Symmetric wires--wire objects were made as above with 
the constraint that the objects were mirror symmetric 
around an imaginary plane slicing the middle of the 
objects; V-Shaped wires--similar to the Symmetric wires 
with the added constraint that the two cylinders on each 
side of the plane of symmetry were colinear, so that the 
objects formed a V-shape, making them both mirror 
symmetric and planar. Each object was constructed by 
specifying the 3D positions of  the five balls. The distance 
between neighboring balls in a prototype object was 
always 3.55 cm (approx. 80 pixels when in the image 
plane). The positions of the succeeding balls in an object 
were specified in spherical coordinates relative to the 
position of  the previous ball. The angle with the z-axis 
was chosen from a uniform distribution between 0 and 
180deg and the angle with x-axis was chosen from 
a uniform distribution between 0 and 360deg. The 
geometric center of the object was then calculated from 
the ball positions in 3D and moved to the origin. Each 
ball had a diameter of 0.23 cm. 

Stimulus images were created by orthographic 
projection of  these objects onto the screen plane of the 
computer display. The Dor6 3D graphics package on 
a Stellar ST2000 computer was used to render the 
wire objects. The objects were rendered with a matte 
Lambertian reflectance. The light source was modeled as 
a point source at infinity, with tilt 0, and slant 63.44 deg. 
Shading indicated to the observers that the images were 
of  3D configurations, rather than 2D patterns. For the 
wire objects, the shading pattern provided some clue as 
to the relative slant of  the wire segments. It also caused 
contrast edges (T-junctions) to be formed at self- 
occlusions, providing further ordinal depth information. 
Size changes were absent, because of  orthographic 
projection. 

In each experimental session, subjects were trained on 
11 different views of one of  the prototype objects. The 
i I training views of a prototype object were created by 
rotating the object first around the x-axis (horizontal 
in the screen plane) six times in 60 deg steps, and then 
around the y-axis (vertical in the screen plane) six times, 
again with 60 deg rotational steps (see Fig. 3), result- 
ing in 11 views of the object. The center of the object 
(defined as the geometric center of the five vertex 
positions) was used as the origin for the rotational 
movement of  the object. The training views of  an object 
extended over an average range of  approx. 5 cm on the 
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FIGURE 2. Objects used in the psychophysical experiments. Top row, Balls; second row, Irregular; third row, mirror 
Symmetric; bottom row, V-Shaped. 

screen. With the viewing distance of  150 cm used, this 
corresponded to approx. 1.9 deg of  visual angle. 

On each trial of  the testing phase of an experimental 
session, two new noisy versions of  the prototype objects 
were created and projected onto the computer  screen. 
A fixed amount  of  uncorrelated Gaussian noise 
(SD = 0.254 cm) was added to the vertex positions of  the 

learned prototype to create a target object. A variable 
amount  of  noise, with a greater SD than that of  the 
target object, was added to the vertex positions of  
the prototype to create a distractor object. The two 
test objects were then orthographically projected to the 
computer  screen from the same viewpoint. On half of  
the trials, the viewpoint was selected randomly from a 
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FIGURE 3. The 11 template views are indicated in this viewing sphere 
by the black squares. Subjects view the object along the z-axis. There 
are two more views on the equator behind, which are occluded. The 
rightmost square represents two views which differ by 180 deg of 

rotation around the z-axis. 

uniform distribution over the viewing sphere. On the 
other half of  the trials, one of  the 11 training views, 
randomly chosen, was used. This created two conditions 
for testing of  each prototype object, an old-view con- 
dition and a new-view condition. Because of the noise 
added to the prototype object, the variance in the visual 
angle subtended by the stimuli was greater than for the 
learned views. 

3.2. Apparatus 

Stimuli were presented on the CRT of  the computer's 
console. Subjects made responses by pressing one of  
two buttons on the computer 's mouse. We wished to 
simulate, as close as possible, the viewing of  the real 
3D objects. Subjects viewed the stimuli monocularly 
through a hole cut in the face of  one end of  a wooden 
tube whose inside was painted black. The other end was 
open and abutted the CRT. The background screen 
color for the stimuli was black, and the border of  the 
computer screen was covered with black cardboard. The 
chin rest f romwhich  subjects viewed stimuli was 13 cm 
from the hole, so there was virtually only one position 
from which subjects could see the stimuli, effectively 
eliminating motion parallax as a flatness cue. 

3.3. Procedure 

Subjects ran a total of  12 sessions, one for each 
prototype object, grouped into three blocks. The four 

*Subject DNB did not reach a 90% hit rate at the end of the practising 
phase for the first two Balls objects and the first Irregular object, 
neither did subject GLJ for the first Ball object. But their hit rate 
performance was within the range 80-89% for these objects during 
their last 50 trials. 

sessions in any one block tested prototype objects from 
each of  the four types used in the experiment. The order 
of  testing the prototypes was randomized across sub- 
jects. Each experimental session consisted of  three 
phases: 

3.3.1. Learning 

Subjects were shown an ordered list of  the training 
views as described above (Section 3.1). 

3.3.2. Practice 

Subjects were presented with two stimulus images 
shown side by side on the CRT. One of  the stimuli was 
a training view of  the prototype (chosen randomly from 
the list of  11), the other was a view of  a distractor object. 
The distractor object was generated either by adding 
noise to the vertex positions of  the prototype object 
or by random generation of  a new wire object. Equal 
numbers of  the two types of  distractor were used. Target 
and distractor stimuli were presented equi-distant from 
the center of  the screen along the horizontal axis. 
The left/right positions of  target and distractor stimuli 
were random between trials. Subjects indicated which of  
the two stimuli was one of  the training views by pressing 
the left or right buttons on the mouse. Feedback was 
given in the form of  erasing the image of the distractor 
(leaving the target on the screen) after each trial. If 
a subject's response was incorrect a bell sounded. The 
criterion for moving from the practice phase of the 
session to the test phase was that the observer responded 
correctly on 45 out of  the most recent 50 trials. The 
maximum number of  practice trials allowed was 100.* 
At any time, subjects could press a third mouse button 
to review the training stimuli, which would be presented 
in order to the subject. Subjects controlled the rate of 
review using the mouse. 

3.3.3. Test 

During the test phase, target and distractor stimuli 
were shown side by side on the screen and subjects were 
instructed to choose the one which was most similar to 
the learned prototype by pressing the left or right mouse 
button. Both stimuli in a given trial were generated from 
the same viewpoint. Figure 4 illustrates the stimuli 
for the task, and more details are given in Section 3.4. 
For  40% of  the trials, the stimufi were generated 
from the same viewpoints used to generate the training 
stimuli. We refer to this as the Old-view condition. For  
another 40% of  the trials, the stimuli were generated 
from novel viewing positions (randomly drawn from a 
uniform distribution over the viewing sphere). We refer 
to this as the New-view condition. The remaining 20% 
of  trials were repeats of the trials used in the practice 
phase of the session. These were used to maintain a 
subjects' memory of the learned prototype. In these 
trials, the target stimulus was a training view of  the 
prototype (with no noise added) and the distractor was 
the same view of a noisy version of  the prototype. We 
refer to these trials as maintenance trials. No feedback 
was given for the test trials. Feedback was given for 
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FIGURE 4. In the test phase of  the experiment, two stimuli 
were generated by a 3D rotation of the noiseless prototype. The 
standard deviation of  the positional noise added to the distractor 
(prototype + more noise) was greater than that added to the signal 

(prototype + noise). 

maintenance trials. Subjects could review the prototype 
object (i.e. its 11 template images) at any time, as 
described above for the practice phase of the session. All 
trials were randomly ordered. The test phase consisted 
of  300 trials, about 240 of  which were test trials (about 
120 old views and about 120 new views) and about 
60 of which were maintenance trials.* Subjects were 
allowed to take an optional break after every 50 trials. 
We used the QUEST (Watson & Pelli, 1983) adaptive 
staircase procedure to find the distractor noise level 
needed for subjects to perform at a 75% correct response 
level. Thresholds were estimated independently for 
the Old-view and New-view conditions. Three paid, 
naive subjects with normal vision participated in the 
experiment. 

3.4. Ideal Observers and Models 

3.4.1. The task 

For the ideal observers, wire objects were repre- 
sented as ordered sequences of vertex coordinates. 
This effectively assumes known correspondence dur- 
ing recognition. In the ideal observer models, we also 

*The experimental design changed after running subject GLJ. For 
this subject, an equal number of  test and maintenance trials 
was used, resulting in a total of  480 trials instead of  300, and 
an optional rest at every 80 trials instead of  50. For this sub- 
ject, test and maintenance trials were presented in regular 
alternation. For subject GLJ, feedback was predictable. The sub- 
ject reported that he paid more attention to the trials with feed- 
back, unaware of  the experimental purpose. We believe that 
since old and new views were randomly mixed and only trials 
without feedback (test trials) were counted, the subject still used the 
same strategy in the test for new and old views. Moreover, the 
subject's absolute level of performance on test trials was not 
particularly different from those of  the other two and the earlier 
pilot subjects. We, therefore, include GLJ's data with the rest o f  the 
results. 

allowed for an ambiguity regarding which of  the two 
ends was the beginning. The 2D/2D ideal represented 
both the prototype object to be matched and the stimuli 
presented on a trial as ordered sets of 2D coordinates 
of object vertices in an image. The prototype object 
was represented as 11 sets of vertices corresponding to 
the 11 different views of  the prototype learned by 
subjects in the experiment. The 3D/3D ideal represented 
both prototype and stimulus objects by their 3D vertex 
coordinates. Note that for the 3D/3D ideal, we have 
assumed that the 3D positions of the vertices of  each 
noisy object could be accurately extracted from the 
image by the ideal. In this sense, the 3D/3D ideal is a 
super-ideal, since it does not take into account any error 
in the perceived 3D shape of objects in the stimulus 
images. 

The task for the ideal was the same as for the 
human subjects--given a prototype wire object and 
images of  two noisy versions of the prototype, decide 
which of  the two noisy stimuli was generated with the 
least noise. The logic of  the task is illustrated best using 
the 3D/3D ideal. The prototype can be represented 
as a point in a 15 dimensional space (5 vertices x 3 
coordinates). The target stimulus is generated by adding 
uncorrelated Gaussian noise with fixed variance to the 
vertex positions of  the prototype and the distractor 
is generated by adding uncorrelated Gaussian noise 
with more variance to the vertex positions. The ideal 
has to decide which of the two stimuli is the target. 
In effect, it has to select which of the two stimuli is 
most similar to the prototype in the sense of mini- 
mizing the mean squared distance between the vertex 
positions of the stimuli and the prototype. This signal 
discrimination task for one dimension is illustrated in 
Fig. 5. Hence the ideal will make a mistake when a 
sample point from the distractor distribution is closer 
to the prototype than a sample point from the target 
distribution. 

Thresholds for the ideals were measured as the 
increase in noise one needed to add to the distractor over 
that added to the target to make the classification 
decision correctly 75% of  the time. 

p(x) t 

I 
x(prototype) 

FIGURE 5. The signal discrimination task presented to ideal observer. 
The ideal must discriminate between two classes of  wire object--one 
generated by adding a small amount of  noise to a prototype object (the 
target), and the other generated by adding a larger amount of  noise 
to the prototype object (distractor). The means for both target and 

distractor sets are the same prototype object. 
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3.4.2. The ideals 

We simulated four different ideals and one model for 
comparison with human subjects' performance. Three 
of the ideals and the model (GRBF) were introduced 
in Section 2. The three ideals are the 2D/2D ideal, the 
3D/2D ideal and the 3D/3D ideal. To these three we add 
a fourth based on the observation that learning of 
an object could take place during the course of the 
test trials, not just the training trials. Such learning 
would not affect the 3D/2D or 3D/3D ideals, since these 
already have assumed an accurate and complete 3D 
representation of a prototype object has been learned in 
training. The 2D/2D ideal, however, could potentially be 
improved by including test stimuli as templates to 
be matched. Though these are noisy versions of the 
prototype, learning them would approximate learning 
new views of the prototype. We call this ideal the 
Learning 2D/2D ideal. 

3.4.2.1. 2D/2D ideal observers. The vertex positions 
of the target stimulus image in each trial are generated 
by first adding Gaussian noise independently to each 
of a prototype's vertex coordinates in 3D and then 
projecting those vertices orthographically onto the im- 
age plane. Orthographic projection amounts to simply 
removing the z-coordinate of each vertex, so that it 
is equivalent to a process which first projects the 
prototype vertices onto the image plane and the adds 
independent Gaussian noise to the 2D vertex positions 
of the resulting wire image. The 2D/2D ideal observer 
matches stimuli against all 2D rotations of the 11 
learned template views of the prototype. This can be 
seen as a sampling of the space of views available to 
the 3D/2D ideal. Accordingly, the 2D/2D ideal effec- 
tively assumes that the target stimulus was generated 
by adding a fixed level of noise to any one of the 11 
learned templates at any of the possible 2D rotations 
of the image. In the limit, as the number of learned 
views approaches infinity (covering the viewing sphere), 
the performance of the 2D/2D ideal will approach 
that of the 3D/2D ideal. For the human and ideal 
observers, noise was not added to one terminal vertex 
of the object. So for the ideal, during each trial, a 
terminal vertex of a template was always aligned with 
a terminal vertex of a stimulus. We assumed that the 
2D/2D ideal knew the sequence of input vertex coordi- 
nates, but did not know if a terminal vertex was 
the beginning or end of the sequence. This last assump- 
tion requires that the ideal take into account the two 
possible vertex correspondences for each of the 2D 
rotations. 

Let S represent the coordinates of the vertices in a 
stimulus image, and T =  {Tl(~b), Tz(~b), . . . ,Tll(~b)} 
represent the 11 prototype template images, each ex- 
pressed as a function of rotation angle, ~b, in the image 
plane. We will write the probability of obtaining a 
stimulus S given that it is the target stimulus as 
ptarg~t(S[O). By assumption, S was generated by adding 
a fixed level of noise to any one of the prototype 
template images at any one of the possible 2D rotations. 

Pt,rget (S I O) is therefore given by 

1 X 

, , ] 
+~Pt,r,o~(S IT,(4~)) p(Ti(4~))dq~, (2) 

where ptarg,t(SITi(~b)) is the probability that S was 
generated by adding noise to template i at rotation angle 
4~. S' is the same stimulus as S, but with the order 
of vertices inverted, p(Ti(~b)) is the prior probability 
of the stimulus having been generated from template 
i at rotation ~. This is assumed to be uniform at 
p (Tf(qS)) = 1/22rr. The ideal observer selects the stimulus 
for which the value of Ptarget(SIO) is greatest. Appendix 
A gives more details of the 2D/2D ideal observer's 
formulation. 

Note that the decision is made by considering possible 
matches with all the template images. An alternative 
strategy, which would not perform as well, would be to 
only use the template which best matched the stimulus, 
a so-called nearest neighbor classification (Duda & 
Hart, 1973). Choosing the nearest neighbor does not, 
in general, produce the maximum of P(imagelobject) 
[see equation (1)]. 

We have also derived an observer which we call 
the Learning 2D/2D ideal. This model acquires as a 
new template after each test trial the average of the two 
test images presented in the trial. Since both of the test 
stimuli are noisy versions of the same view of the 
prototype, their average approximates a projected 
image of the prototype object. The learning ideal uses 
the same algorithm for matching as the 2D/2D ideal 
with the exception that the number of templates 
it matches against increase with each trial. A more 
detailed description of this learning ideal is included in 
Appendix A. 

3.4.2.2. The 3D/2D ideal observer. The 3D/2D ideal 
observer is similar to the 2D/2D ideal, except that 
instead of matching stimuli against all 2D rotations of 
the 11 learned template views, it matches against all 
possible views of the prototype object. An ideal observer 
which can only detect the 2D vertex positions in a 
stimulus image, but has a full 3D model of the prototype 
(the 3D/2D ideal), would estimate the probability that 
a stimulus is a target by integrating the probabilities 
of obtaining that stimulus by adding white Gaussian 
noise to the 2D vertex positions in each of the possible 
views of the prototype. It takes as its image formation 
model 

S = T(q~, 0, ~o) + N, (3) 

where S is a representation of the 2D vertex positions of 
a wire in a stimulus image and T(~b, 0, co) is the ortho- 
graphic projection of the 3D vertex positions of a 
prototype object with 0 and o9 being the viewing angle 
and q~ being the rotation angle around the viewing 
axis. N is the noise added to the 2D positions of the 
vertices in the stimulus image. Let Ptarget(SlO) be the 
probability of obtaining S as an image of the prototype 
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object after adding the target level of noise. Ptarget(SI O) 
is given by 

Ptarget (S ] O) = Ptarget (SI T(0, ~b, co)) 
do dO 

x p (0, ¢, co) dO d~b dco, (4) 

where Ptarget (S [ T(0, t~, o9)) is the probability of  S having 
been generated by adding the target level of noise to 
the 2D vertex positions of the prototype object in 
view, T(tk, 0, co). p (~, 0, co) is the prior probability of 
viewing the prototype object from a fixed position on 
the viewing sphere and at a fixed orientation around the 
viewing axis. 

Unfortunately, the solution of the integral in equation 
(3) is computationally prohibitive, so we do not actually 
calculate the performance of this 3D/2D ideal. Instead, 
we have calculated a nearest-neighbor approximation to 
the ideal observer in which each stimulus image S is 
compared with the view of the prototype O to which it 
is closest (using a Euclidean distance norm). Thus, for 
each stimulus image S, we search for the orientation 
(th, 0, co) from which the 2D projection T(q~, 0, co) of the 
3D model has the minimal Euclidean distance with S. 
That  is, we seek the global minimum of the function 
II S - T(th, 0, co)II. The stimulus for which this distance is 
minimized is selected by the ideal as its guess of the 
target. More details of the 3D/2D ideal are given in 
Appendix B. 

3.4.2.3. The 3D/3D ideal observer. The 3D/3D ideal 
matches a complete 3D representation of stimulus vertex 
positions with an internal representation of the proto- 
type's 3D vertex positions. We assumed that the 3D 
translations and rotations of  the input were known, 
so that the correspondence problem for the matching 
between the input and the internal representation had 
been solved. Under these assumptions, we have been 
able to obtain an analytic solution, in the form of a 
polynomial equation, for the threshold distractor noise 
level relative to the target noise level needed to obtain a 
fixed percentage of  correct responses. The derivation is 
given in Appendix C. 

3.4.2.4. Generalized radial basis function (GRBF) 
models. In addition to comparing human performance to 
the above ideal observers, we also computed efficiency 
relative to a GRBF implementation (Poggio & Edelman, 
1990). In general, a GRBF model consists of a layer 
of hidden units each of which computes a Gaussian 
function of the input vector. The outputs of these units 
then serve as input to a simple linear associative net, 
i.e. the weights of the associative net, represented as 
a matrix, are applied to the output of  the hidden 
units to give the final output of the system. This output 
could be either a scalar or a vector. In learning, the 
parameters describing the Gaussian functions for the 

*A simple alternative implementation would be to have a scalar output 
whose value would indicate how well a test image matches the 
learned object (Edelman & Poggio, 1990). When the output weights 
of this model are uniform, this version of GRBF is equivalent to 
the 2D/2D ideal we describe. 

hidden units (mean vectors and standard deviations) 
as well as the weights of the linear associative net 
are modified to optimize the mapping from training 
inputs to desired outputs. The final system computes the 
function 

M 
f(x)  = ~ weGi(ll x-tell ;  ~e) (5) 

i = l  

where x is the vector input, wi is either a weight 
vector or a scalar weight depending on whether the 
output is a vector or a scalar, Gi(e) is the Gaussian 
with standard deviation, a~ and mean vector te associated 
with the ith hidden unit, and f ( x )  is the output of 
the system. 

In their GRBF model of object recognition, Poggio 
et al. (Poggio & Edelman, 1990) train a system to 
recreate from any view of  a single object, a prototype 
view of that object. Their model represents any view 
of a wire object by a vector of  its projected vertex 
coordinates (in general, they argue that an object 
could be represented by any appropriate feature co- 
ordinates). The system is trained to associate a set of 
training views of an object with a prototype view. In 
the comparisons given here, we simulate a specific 
example of such a system, which has the same number 
of  hidden units as there are training views.* In this case, 
the means of the Gaussians associated with each hidden 
unit are simply the template views themselves. The 
training views were generated from the 11 template views 
used in the experiment. First, both vertex orderings 
for the stimulus views were taken into account. Second, 
for each of  the 11 views, a finite number of  2D rotations 
were included as template views. The number of  
rotations was selected to be that number at which 
performance of the model reached an asymptote. More 
details of  the GRBF model we simulate are given in 
Appendix D. 

We note that the G RBF  model can be considered to 
be an approximation to the 3D/2D ideal observer (see 
Appendix D). It effectively finds the best fitting Gaussian 
interpolation (from the 11 training views and their 2D 
rotations for both vertex orderings) to the function 
mapping the hypersurface defining all possible views of 
a prototype object to a prototype view. If  that function 
were known, it would capture all the 3D information 
captured in the 3D/2D ideal. 

4. RESULTS 

Figure 6 shows the threshold of distractor noise 
level in centimeters needed for 75% correct classifi- 
cation of  target stimuli for each of  the four types 
of prototype objects (the fixed target noise level is 
indicated by a straight dashed line on the graph). 
An analysis of  variance performed on the results show 
the following effects: a main effect of  object type 
[F(3, 6) = 15.46, P < 0.005], a main effect of view type 
(old vs new) [F(1, 2 ) =  30.76, P < 0.05], and a signifi- 
cant interaction between object type and view type 
[F(3, 6) = 6.80, < 0.025]. Clearly, subjects' performance 
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FIGURE 6. Subjects' averaged performance. Thresholds are the mean 
standard deviations of the Gaussian positional noise distributions 
added to the distractor vertices, when subjects were 75% correct 
classifying the targets from the distractors. The targets had a fixed 
positional noise with the standard deviation of 0.254 cm shown by the 
dashed line. The target/distractor pairs were generated from the same 
prototype wire objects. A QUEST procedure was used to adjust the 
thresholds to keep subjects' performance at 75% correct level. Error 

bars are + 1 SD. 

improves with increasing regularity of  the objects tested 
and the difference in performance between old views and 
new views appears to decrease with increasing regularity 
of  the objects tested. A p o s t  hoc  test on view type (new 
vs old) effect for different objects yielded a significant 
effects for Balls [t (2) = 3.31, P < 0.05], a non-significant 
effect for Irregular I t ( 2 ) =  1.65], a significant effect 
for Symmetric [t (2) = 3.58, P < 0.05], and no effect for 
V-Shaped [t (2) = -0.41].  

Thresholds for the 3D/3D ideal observer were 
computed numerically from the defining polynomial 
equation derived in Appendix C. Thresholds for the 
2D/2D, the 3D/2D ideals, and the G R B F  model, which 
could not be computed analytically, were estimated by 
running QUEST for 2000 trials. The Learning 2D/2D 
was simulated using the same sequence of stimuli as 
subjects were shown. Figure 7(a, b) shows the thresholds 
for the ideals and the G R B F  model for the old and new 
views, respectively. Performance of the 2D/2D and 
learning 2D/2D ideals as well as the G R B F  model was 
considerably worse for new views than for old views. 
This difference does not appear  for either the 3D/2D or 
3D/3D ideals, as it should not given their definitions. 
Note that the thresholds do not differ significantly across 
object type. As one would expect, the 3D/3D observer 
does best, and the 2D/2D observer does worst. The 
learning 2D/2D shows a slight improvement over the 
2D/2D observer as would be expected since it has more 
information on which to base its judgments. The per- 
formance of the G R B F  observer lies between the 3D/2D 
and the 2D/2D observer. 

From the threshold data, we calculated statistical 
efficiency measures for subject performance relative to 
the ideals and the G R B F  model. Efficiency for this task 
(see Appendix E for the derivation) is given by the ratio 
of  threshold differences between target and distractor 
noise variances for an ideal and a subject. Figure 8(a-e) 

shows subjects' statistical efficiency relative to the ideals 
and the G R B F  model. Efficiencies were computed for 
each object used in the experiment independently and 
then averaged within object type to obtain the data 
shown in the plot. Of  particular note in these results is 
the fact that for the three types of  wire objects, subjects 
were able to match or beat the 2D/2D ideal on new 
views, as reflected in efficiencies which were greater than 
or equal to 100%. For new views of the Symmetric and 
V-Shaped objects, subjects could still beat the Learning 
2D/2D ideal and the G R B F  model. Figure 8(c) shows 
the estimates of  the 3D/2D efficiencies which are relative 
to the actual information available in the task. Peak 
efficiency is for old views and is around 20%. It is 
interesting to note that 3D/2D efficiencies [Fig. 8(c)] 
are only about twice the 3D/3D efficiencies [Fig. 8(d)]. 
This reflects the high efficiency of the 3D/2D ideal 
relative to the 3D/3D ideal. 

Subjects took an average of  3 sec to respond to each 
trial (the Balls condition took slightly longer). After each 
experimental session, subjects were asked to describe 
what they were doing and to draw the prototype objects 
on which they were just tested. All subjects reported that 
they tried to imagine the target object as a single 3D 
object, rather than as a set of  images. No subjects 
mentioned that they had to explicitly decide which end 
of the objects to match up. 
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FIGURE 7. (a, b) Mean thresholds over the three objects for the ideal 
observers and the GRBF model for old and new views, respectively. 

The error bars show _+ 1 SD, 
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FIGURE 8. Statistical efficiency of human observers for the various object types relative to: (a) the 2D/2D ideal; (b) the learning 
2D/2D ideal; (c) the 3D/2D ideal; (d) the 3D/3D ideal; and (e) the GRBF model for the different types of objects. The means 

were computed by averaging the efficieneies across the three objects for each type. The error bars show _+ 1 SD. 

5. DISCUSSION 

5. I. 21) vs 3D Internal Representations 

If an ideal model approximates the scheme used by the 
human visual system, one expects that the efficiency 
would be less than 100%, because of internal noise; 
however, the performance pattern should appear the 
same for the ideal and human observer. One of the main 
results obtained in the experiment is that for the three 
YR 35/4~E 

types of wire objects used as prototypes, human subjects 
performed as well as or better than the 2D/2D ideal for 
new views of the objects. The high efficiency relative 
to the 2D/2D ideal eliminates a simple 2D template 
matching strategy as a model for performance in this 
task. Further, even when the 2D/2D ideal is allowed 
to learn new templates during the testing phase, 
human performance still exceeds it for new views of the 
Symmetric and V-Shaped objects [Fig. 8(b)]. We must, 
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however, consider the possibilities that: (a) although the 
memory representation may be 2D, the matching process 
incorporates some 3D constraints, such as the approxi- 
mation of the view hypersurface learned by GRBF 
models; and (b) coarse 3D information is stored along 
with 2D templates and this is matched against coarse 3D 
information provided in the stimulus images by features 
such as shading and occlusion. We distinguish this 
strategy from the strategy of the 3D/2D ideal which has 
a 3D object model and compares stimulus images with 
possible views of the object model. 

5.1.1. Comparisons with GRBF models 

Poggio and Girosi have developed a very power- 
ful theory called Hyper Basis Function approximation 
(HyperBF) that can be applied to a diverse set of 
function approximation problems, including recognition 
(Poggio & Girosi, 1989, 1990). The GRBF models 
proposed as possible models for recognition (Edelman & 
Poggio, 1992; Poggio & Edelman, 1990) are special cases 
of  HyperBFs. Depending on the implementation, the 
performance of a HyperBF model can span the range 
between our 2D/2D and 3D/2D ideal observers. We 
restricted our analysis to scalar and vector output 
GRBFs that assume the number of the centers are equal 
to that of  the learned templates, the standard deviation 
of the hidden units' Gaussian interpolating functions is 
fixed, and the mean vectors of  the Gaussians are fixed to 
be the same as the learned template views. Our 2D/2D 
ideal is equivalent to a scalar-output GRBF model 
which has as templates all the learned views (with both 
possible vertex orderings) and their rotations in 2D. The 
simulations shown in the results were for a stronger, 
vector-output GRBF model which has as templates not 
only the 11 training views, but also a densely sampled set 
of targets corresponding to all 2D rotations of the 
training views as well as both possible vertex orderings 
for test stimuli. As shown in Fig. 8(e), subjects' efficien- 
cies relative to this GRBF implementation were greater 
than 100% for the Symmetric and V-Shaped objects.* 
The GRBF performance could be pushed closer to that 
of the 3D/2D ideal if it had more than this set of  views, 
and if allowed the additional power of the HyperBF 
approximations that are captured by adjustable means, 
a weighted norm, as well as a polynomial weighting 
term. 

Simple modifications of the specific GRBF model we 
implemented would not seem to account for our results. 

*A potential way of improving the performance of  the GRBF model 
(or, for that matter, the 2D/2D ideal) for symmetric objects is 
suggested by the recent result of  Poggio and Vetter (1992) that 
for each view of a symmetric object, one can generate three novel 
views (and their 2D rotations). At first glance, it appears that this 
could explain the improvement in performance for Symmetric and 
V-Shaped objects. It turns out, however, that the set of  training 
views we used was closed under the operation prescribed by 
Poggio and Vetter. That is, applying the appropriate operation for 
generating new views to any of  the 11 training views used in the 
experiment simply resulted in the generation of  another view in the 
set of  1 I. 

It is counterproductive, for instance, to reduce the 
number or change the means of the hidden units, when 
the old v i e w ~ t h e  centers themselves are the only 
feedback the model can have. Any such changes would 
hurt the performance of the model on trials on which old 
views were tested, which made up half of the test trials. 
Similarly, although it may improve the model's perform- 
ance for the new views when the standard deviation of 
the Gaussian function is changed, it is difficult to achieve 
this without feedback from the new views. In fact, we 
have simulated the model's performance for the old 
views for a few objects, with different Gaussian standard 
deviations, and found no better standard deviations than 
the current one used for the old views. One way to save 
the GRBF model that we simulated would be to propose 
that new templates were learned by subjects during the 
testing phase and added as new centers for Gaussian 
interpolating functions. Although this possibility can 
never be firmly rejected, we attempted to investigate it by 
looking at the temporal course of reaction times during 
the testing phase. One might expect that if learning 
occurred during the testing phase, reaction times for new 
view trials relative to old would decrease with time. We 
divided each session into three equal parts and averaged 
the reaction times for new and old view trials in each of 
the three parts of the sessions. Figure 9 shows the results 
of this analysis. No significant effects of time are appar- 
ent in the data. Even if such learning were to occur, one 
would not expect it to differentially affect performance 
on Irregular, Symmetric and V-Shaped objects. 

Finally, we wish to reiterate that general forms of 
HyperBF, with appropriate feedback, would be quite 
a bit more powerful than the GRBF model simulated 
here, which was not designed specifically for symmetric 
objects. A HyberBF network can, in fact, learn from 
examples a good approximation of the hypersurface 
defining the possible views of an object (Poggio, personal 
communication). This would provide an implementation 
of Ullman and Basri's theorem that three 2D views of 
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FIGURE 9. Response times for three temporal intervals during testing 
for each object, pooled over all the objects. Any change of response 
times for the old views will only indicate a task familiarization effect, 
but not learning new templates. Therefore, a non significant trend of 
the change of response times for the new relative to old views suggests 
that no substantial learning of new templates occurred during the 

exoeriment. 
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a wire object are enough to reconstruct the 3D model of 
the object itself (Ullman & Basri, 1989). Such a model 
would provide a good approximation to the 3D/2D ideal 
we have described. 

5.1.2. 3D information in the stimulus 

A major assumption underlying the ideal observers 
and the GRBF model we simulated was that an observer 
had as input information only the 2D vertex positions of 
the wire object in a stimulus (the 3D/3D ideal was an 
exception to this, having as input the 3D vertex positions 
of a wire object). The stimuli, however, contained coarse 
depth information which subjects could have used to 
perform the task. This information took the form of 
the shading on the arms of the wire objects and the 
occasional occlusion of one part of an object by another. 
Subjects could well have employed a mixed strategy of 
matching both 2D stimulus features and coarse 3D 
information (e.g. depth ordering from occlusions) with 
similar information in an internal object model. The 3D 
information in the stimuli, however, appears to be very 
coarse, and its incorporation into an ideal observer 
would not greatly improve the ideal's performance. 
Previous results did not find any difference between thick 
wire objects used here and objects of balls connected 
with lines, where shading on the lines and their occlusion 
ordering were unavailable (Liu, Kersten & Knill, 1992). 
The only depth ordering cue available was when one ball 
occluded another, which happened rarely. Moreover, it 
seems to us that the use of such information would not, 
by itself lead to differential performance for new vs old 
views or for Irregular, Symmetric and V-Shaped objects. 
As a qualitative test for such biasing effects, we ran 
simulations to measure how often occlusions occurred in 
stimulus presentations of the different wire objects used 
in the experiment. Occlusions occurred approximately as 
often for all three types of objects, suggesting that the 
information provided by occlusions is no greater for one 
type of object than another. Viewpoint dependency 
effects in recognition may be obtained even when reliable 
3D information is provided in the stimuli (Edelman & 
Biilthoff, 1992). Edelman and Biilthoff showed that the 
inclusion of stereo information in views of a wire object, 
while decreasing the absolute error rate, had no effect on 
the viewpoint dependency of recognition. 

5.1.3. Generality of  result 

Our rejection of the 2D template matching strategy 
with 2D operations as a model for the current task does 
not imply that a 2D template matching mechanism is not 
part of the complete object recognition system. The 
system may use a hierarchy of strategies, including 
2D template matching, in doing object recognition 
(Edelman, 1991). What strategy human observers use 
may depend on the particular task as well as the 
information available for performing the task. More- 
over, a sequence of strategies of increasing complexity 
may be applied until a reliable solution is obtained for 
a recognition task. For example, a simple 2D template 
matching strategy may be the first applied to images. 

When this gives a fairly reliable solution, the solution 
is accepted, whereas when it doesn't, more complex 
strategies involving, for example, the reconstruction 
of 3D representations from image templates may be 
employed. 

5.2. Object Regularity 

An effect of object regularity is clearly evident in the 
data. Not only does subjects' performance improve with 
increasing regularity of the prototype objects, but 
the difference in performance between old and new 
views decreases with increasing regularity. Both results 
suggest that regularities in the 3D structure of the 
prototype objects were taken advantage of in the 
internal representations generated by subjects. Poorest 
performance was for the Balls condition. As an "object", 
a collection of balls lacks connectivity and an order- 
ing of feature elements. The lack of ordering is problem- 
atic both for setting up correspondences between 
views and for comparing a new view with existing 
templates. An example of how regularity in symmetry 
can improve performance is offered by Poggio and 
Vetter's (1992) recent theory that a legal 2D view of a 
3D object can be determined from only one 2D model 
view if the object is mirror symmetric [their theory 
relies on the view combination theory of Ullman and 
Basri (1991)]. The V-shaped objects had regularities 
of planarity and colinearity of the two arms. These 
regularities may facilitate the development of internal 
representations. Performance may also have been better 
because colinearity is an important projective invariant; 
the visual system may be more sensitive to colinearity 
than other positional changes. Rock and DiVita (1987) 
have made arguments similar to the above about the 
role of regularities in discussing a possible hierarchy 
of object representations. Certainly, such a strategy 
which utilized object regularities would optimize 
the efficiency of representations, in terms of memory 
capacity requirements. Moreover, many of the objects 
we encounter have strong regularities in shape, such 
as symmetry, further suggesting that having specialized 
matching processes for dealing with these would be an 
efficient allocation of limited resources. It is worth 
emphasizing that none of the models which we have 
considered (Fig. 8) can account for the advantage 
conferred by regularity. 

5.3. Viewpoint Dependency 

The data indicate that for the balls and symmetric 
objects, subjects' performance for new views is worse 
than for the old views, and that it is not dependent on 
viewpoint for V-shaped objects. Although we did not 
find a significant difference of view type for irregular 
objects, this is largely due to one subject's poor perform- 
ance for one irregular object, which was the very first 
object on which he was tested. Consistent with the 
reaction time measurements of previous studies (Bfilthoff 
& Edelman, 1992; Tarr, 1989), we believe that viewpoint 
dependency for irregular objects may show up if we 
test more subjects. It seems, therefore, that viewpoint 
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dependency is a function of the object structure. It can 
diminish when the objects are highly structured, even for 
the type of  subordinate level object classification task 
used here. 

As mentioned above, Rock and DiVita (1987) have 
argued that the generation of 3D object representations 
is greatly facilitated by regularities in object structure. 
Such regularities tap into special purpose represen- 
tational systems. Irregular objects do not tap into 
such systems and are therefore represented using an 
image-based scheme. They argue that only for very 
regular objects is a 3D representation significantly more 
efficient than an image-based representation, so that 
a system designed to maximize efficiency of information 
storage would be more likely to represent regular objects 
in 3D than irregular objects. Particularly interesting 
in this regard is Poggio and Vetter's result, mentioned 
above, that one view of a bilaterally symmetric object 
is sufficient to test whether a new picture is a novel 
view of the same object or not. This suggests that 
simply adding a flag indicating symmetry to one view 
of an object is enough to solve the recognition task. 
We would like to add to this potential explanation of 
differential viewpoint-dependent effects the fact that 
extraction of  3D information is greatly facilitated by 
object regularities, so that the visual system explicitly 
infers detailed 3D structure only for regular objects. 
Probabilistic arguments show that a strong inference of 
object structure can be obtained when it has special 
properties such as symmetry, even without an explicit 
indication that the object has such properties. That 
the visual system should be designed to detect such 
regularities in 3D structure from images makes a 
great deal of sense in a world in which objects can 
be categorized along lines of the different types of 
regularity (planarity, symmetry, parallelness, colinearity, 
etc.) which they contain [see Richards and Jepson (1992) 
for a detailed theoretical discussion of these points]. 
Given these considerations, as well as the preliminary 
nature of the results presented here, further research on 
the effects of object regularity on object recognition 
should be pursued. 

5.4. Usefulness o f  the Ideal Observer Approach 

The ideal observers' performances varied somewhat 
between different objects indicating that the information 
of the task was more reliable for some objects than 
others. This by itself justifies the use of efficiency to 
obtain an absolute measure of performance, since it 
factors out effects of information reliability. How did it 
come into play, however, for the two main stimulus 
manipulations used in the experiment, viewpoint and 
object regularity? The 2D/2D ideals and the G RBF  
model all showed differential performance for old and 
new views, as did subjects. Whereas, typically, one would 
be left with a qualitative comparison between these two 
effects, the use of efficiency allows one to make a 
quantitative assessment of the relative strength of the 
viewpoint effect for the ideals and the subjects. The fact 
that efficiency was higher relative to these ideals for 

new views than it was for old views allowed us to make 
an argument against the models which otherwise could 
not have been made. 

In regards to object regularity, Figs 6 and 7 show 
no significant difference in the performance of any of 
the ideals or the GRBF model across different object 
types. This indicates that the differences in information 
reliability found between different objects were effec- 
tively random and not tied to the type of an object. For 
purposes of comparing absolute performance across 
different object types, therefore, we could just as 
well have used raw threshold data. We note, however, 
that the lack of  a significant difference in information 
reliability between object types could not be known a 
priori and simulation of the ideals was necessary to 
ascertain that a correct measure of performance be used 
to assess differences between object types. In more 
complicated tasks, in which stimuli are created by some 
heuristic standards, and not randomly as was done here, 
the possibility of experimenter bias unknowingly affect- 
ing the information content of  the stimuli increases, 
making the need for simulating ideal observers for a task 
even more important. 

6. CONCLUSION 

To conclude, we have extended the ideal observer 
paradigm to the study of  object perception. That the 
efficiencies relative to the 3D/2D ideal were on the order 
of 10-20% suggested that they were comparable with 
those in other, lower-level perceptual tasks (Barlow 
& Reeves, 1979), so that experiments like this are 
reasonable ones to address the problem of  3D object 
recognition. Based on the comparison between human 
and ideal observers, we can rule out simple 2D tem- 
plate matching algorithms, for which the 2D/2D ideal 
observer yields an upper limit on the best possible 
performance, as mechanisms underlying human per- 
formance on the task. The GRBF model we have 
simulated in this paper yields the best possible perform- 
ance under the conditions given in (Poggio & Edelman, 
1990), but nevertheless cannot account for the perform- 
ance level in all of  our conditions. The increase in 
efficiency with increases in prototype regularity indicates 
that special aspects of 3D object structure, such as 
symmetry and planarity, are taken advantage of in the 
presentation and recognition of objects. This suggests, 
in particular, that models of human recognition should 
include special mechanisms to handle symmetric 
objects. Finally, the viewpoint dependency of object 
recognition appears to be dependent on the structure of 
objects. Metric object recognition can show little or no 
dependence on viewpoint when the objects are highly 
regular. 
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APPENDIX A 

The 2D/2D Ideal Observer 

The learned templates consist of the 11 images presented to subjects 
during the training phase plus their 2D rotations in the image plane. 
We represent these as vector functions of 2D rotational angle t~ with 
each function corresponding to one of the learned templates, 

T = {TI(O), Tz(O) . . . . .  Tu(O) }, (A1) 

where T~(~b) = li(~b)T~(0), T~(0) = [0, 0, X 1 , Y~ . . . . .  )(4, )'4] r, and Ill(b) 
is the 2D rotation matrix. The image formation model for the target 
stimulus is: 

Starget = T~(~b) + N, (A2) 

where N is a 10-dimensional vector of independent random 
variables, each with a Gaussian distribution of G(0; a,), and S = 
[0, 0, xl,y~ . . . . .  x4,Y4] r represents the coordinates of a stimulus's 
vertices. As the ideal does not know which end-point of the 
stimulus to choose, both S and its end-to-end reversal, S ' =  
[0, 0, x 3 - x4, Y3 -Y4 . . . . .  -x4 ,  -),4] r must be considered in comput- 
ing the probability. The ideal selects from the test pair the one with 
a larger probability as the target. We write Ptarget(S]O) as 

2, 1 1 
Pt~.rget(SlO) = ~l fo [~Pt~.rg,:t(SlT~(dP)) + ~Ptarget(S']T,(~))) ] 

× p (T;(~b)) d~b, (A3) 

where Ptarget (SIT, (q~)) is the probability of having obtained S by adding 
noise N to Ti(~), given by 

1 
Ptarget (S ]Ti(q~)) = p  (N = T~(~b) - S) --j=l X~2~, 

xexp f (Xjcosq~+ Y : s i n ~ - x j ) Z + ( - X j s i n O +  Yjcos~b-yj)Z]. 
2~, ~ 

(A4) 

The prior distribution of training views is assumed to be uniform, 
so that 

1 1 1 
p (T~(40) - 11 2~ - 22~ (A5) 

The ideal selects a target from the test pair from each trial. Threshold 
data were obtained using QUEST on the same stimuli used for the 
human subjects. 

To test the possibility that subjects learned, without feedback, 
new 2D templates during testing, we have devised a learning 2D/2D 
ideal. This ideal acquires a new template after each test pair by storing 
the average of the two stimuli. Recalling that during the experiment, 
subjects were tested on 240 pairs of images, 120 of which old views, 
120 new views, randomly mixed. We, however, have simulated the 
model for old and new views separately, each with 120 pairs. This is 
due to the computational limitation and our assumption that 
adding more noisy old views may little improve the performance of the 
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model for new views, but hurt the performance for the old views, as 
indeed shown in the figure. Note that, unlike the 2D/2D ideal or the 
G R B F  models, this learning 2D/2D ideal acquires new templates 
which cannot  be obtained by 2D reflection and rotation in the image 
plane from the stored templates, but truly new views. The fact that 
human  subjects can beat even this ideal observer further argues that 
our result cannot be accounted for by the 2D template matching. 

A P P E N D I X  B 

The 3D/2D Ideal Observer 

The ideal takes as its image formation model 

S = T(4), O, co) + N, (BI) 

where S = [ 0 , 0 ,  x , , y  I . . . . .  x4,Y4] T is the image, T(~b, 0, o ) )=  
P~(q~, 0, o9)O = [0, O, Xt, Yt . . . . .  X4, Y4] r is the orthographic projec- 
tion of  the 3D object O, which is a vector representing the 3D vertex 
positions of the prototype object, ll(~b, 0, v)) is the viewpoint trans- 
formation which rotates the object into a viewpoint-centered co- 
ordinate system and P is the orthographic projection transform, and 
noise N is a vector of  independent, Gaussian random variables, 
N = [0, 0, n, ,  n2, . . . , n8] r. The probability of  having obtained a 
stimulus, given that it was created as the target is given by 

Ptarget(SlT(~b,O, o o ) ) = p ( N = T ( ~ b , O , ( ~ ) -  S). (B2) 

Integrating this over all possible views gives 

Ptarget ( S ] O )  

n 2~ 2~ 
(.3, 

where p((p,O,o)) is the prior probability of  viewing the object 
from position (0, co) at orientation q5 around the viewing axis. 
For the experiment this was uniform, so p (qS, 0, (o) = l/4rr z sin o9. 
p (N = T(q~, 0, c o ) -  S) is given by the Gaussian distribution 

4 1 e x p [  (X ' -x ' )Z+(Y '  Y')2] 
" ( N  = T(~ '  0' u')) - S) = , _l~Ii ~ o -  t 2o'~ J 

4 

1 ~ I , J 

= e x p / - - '  ' ~ 7>11 , (B4)  
(.j~,)~ L 2<- 

so we have for p,a,-g~,(SIO) 

Cn ('2" ~ .27r 1 . 1 
= ~ s in  (o - = : 

P ta rge t (S]O)  J0  J0  ~0 4 x  ( j 2 7 ~ o - t )  4 

L (Xi xi)2+(Y,--)',)2 3 
i- 

x exp k 5a~ Jd0 dq5 do). (B5) 
i=1 

Unfortunately,  evaluation of  the integral in equation (B5) is computa-  
tionally prohibitive, so we have chosen to approximate the 3D/2D 
ideal using a nearest-neighbor model. In this model, we use as a 
measure of  fit between S and O the Euclidean distance between the 
S and the view of  O which minimizes this distance. Searching for 
the orientation (~b, 0, ~o) that minimizes the Euclidean distance between 
S and the 2D projection T(~, 0, o~) of  the 3D object O. T(~b, 0, ~o) is 
given by 

~l'(~b, 0, a)) = arg[minllT(q~, 0, o)) - Sll], (B6) 

where 

4 
IIT(~b, 0 , ~ ) ) - S l l  = Y~ [(X, - x, )2 + ( Y, ),,)21. (B7) 

~=, 

Note that this 3D/2D ideal yields the same performance for old and 
new views. 

A P P E N D I X  C 

The 3D/3D Ideal Observer 

We assume that the observer has an internal representation of  the 3D 
vertex positions of  the prototype and receives as input a specification 
of  the 3D coordinates of  the wire vertices in the stimulus images. We 

further assume that the observer knows the viewing position, so that 
it can match stimulus objects to prototypes in world coordinates. Let 
us represent the prototype model as a vector of  3D vertex coordinates 

O = [0, 0, 0,  ~ ' l ,  Y I , Z I  . . . . .  X 4, Y4,Z,~] 1, ((71) 

where we have taken one endpoint of  the wire to be the origin. The 
target stimulus is generated by adding noise to the prototype object 

Starget = O -1- N ,  ((272) 

where S = [0, 0, 0, xt,  yl,  z~ . . . . .  x4, Y4, z4] ~ represents the vertex co- 
ordinates of  a stimulus object and N = [0, 0, 0, n, ,  nz . . . . .  hie] 1 is a 
vector of  independent random variables, each with a Gaussian distri- 
bution of  G(0; at)- By not adding noise to the endpoint of  the wire, 
we can always treat the position of the endpoint of  a stimulus as the 
origin and represent all vertex positions relative to this point. Doing 
this makes the formulation of all of  the ideal observers translation 
invariant. 

We represent the probability of  obtaining a stimulus, S, given that it 
is the target, a s  Ptarget ( S [ O ) .  In any given trial the ideal observer selects 
the stimulus which has the larger value of  p,~rget(SIO), pur~t(S[O) is 
given by 

Ptarget (S I O) = P (N = O - S) 

4 I 
pt,rg~(SFO)= 1-I = exp [  ( X i - x i ) 2 + ( y ' - Y ' ) : + ( Z ' - z ' ) ' ]  

,=. x/2rt o- ' [ 2a~ J 

1 

(N/  27~ O" t )4 

4 

xexp[--!--I~l {(X' x'):+(Y'--V')~+(Z'2cr~ I -, :~hj. (C3) 

From equation (C3), we see that the ideal observer can use as a 
decision variable the Euclidean distance between the stimulus vectors 
and the prototype vector. The observer should select as the target, the 
stimulus with the smallest distance. Since we can derive the distribution 
of this distance for both target and distractor stimuli, we can derive 
the threshold level of  distractor noise needed to reach a given 
performance level (i.e. percentage correct). 

It is easy to show that the squared Euclidean distance, d, between 
an n-dimensional vector and the same vector disturbed by white 
Gaussian noise G(0; or) has a Z 2 distribution 

d ' " :  " [ - d J  
p,/(d; n) = 2"-'a"F(n/2) exp 2a 2 . (C4) 

Given a fixed a,, we would like to find the standard deviation a d for 
the distractor noise which would give a threshold probability of  
obtaining a squared Euclidean distance for the target stimulus greater 
than that obtained for the distractor stimulus, i.e. P (dt > d d) = P,h~*h,,,a 
(in our case, Pthreshold = 0.75). Equivalently, we want to find a d so that 
P (d~ -- d d < O) = Pthr~ho~a. To do that we need to derive the probability 
density function of Ad = d t - de,, paa(Ad; n). 

Since d t and d d are independent, we can write paa(Ad; n) as 

fo pa,(x;n)pa~(x - A d ; n ) d x ;  < 0 )  (ad 

paa(Ad; n) = (C51 

p j , ( x ; n ) p a j ( x - k d ; n ) d x ;  (Ad~>0) 

where the region of integration differs for the two ranges of Ad because 
of the singularities in pu,(dt; n) and pad(da; n) at 0. Since we are only 
concerned with the range kd  < 0, we need only evaluate the first 
integral. Expanding (C5), we obtain 

paa(Ad;n) = 2,,[F(n/2)]2(atad)" ~ x "2 l exp (x Ad 

x exp F>-(-':. ---~ Ad )~ dx 
k 2~ra J 

exp[Ad/2aa] f '  
= n ") x n 2  I('V A d  ),, 2 t 

2 [F(n/2)]-(a t a,, }" 
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× e x p [ - - x  (2~t2 + ~ ) ] d x  

exp[Ad/2o-~] f® "/~'  C"  
- 2 " ~ ) " J o  ~'~-o "/z-'X . . . .  2(-Ad)m 

× e x p [ - x  ( ~  + ~ ) ] d / ,  

where CPq =p!/q!(p - q)k Making the substitution, z = x(1/20-2t + 
1/20-~), and assuming n is even (true in our case), we obtain 

exp[Ad/20-,]] ( 1 + 1 "] . . . . .  1 
paa(Ad; n) = 2,[F(n/Z)]Z(0-t0-a)n \ ~a~ t ~a~J 

fo o ,/2-1 C m z ~ m 2exp(_z)dz}"  x ~ { . / 2 - 1 ( - A d ) "  
m = O  

Noting that 

: z p e x p ( - z )  dz =p! ,  

for positive integer p, we obtain finally 

exp[Ad/2a~] ( 1 1 "~ . . . . .  1 
pad(Ad; n) = 2,,[F(n/2)]2(atad),, k 2~a2 t + 20-~] 

n/2 I 

x ~ {C~/2 , ( - A d ) " ( n - m - 2 ) l }  
m = O  

(C6) 

for Ad < 0. The ideal observer's percentage correct is given by the 
probability that Ad < 0; thus, the distractor noise level 0-d needed to 
achieve a fixed threshold performance level satisfies fo 

D -- p^,t(Ad; n) dAd. (C7) • threshold - -  

Expanding (C7) gives 

(0 exp[Ad/20-~] ( 1 1 "~ . . . . .  , 

n/2 I 

C m - -  2 ) ! } d A d .  x ~ { ,/2- I (-- Ad)m(n -- m 
m = 0  

Making the substitution, u = -Ad /20 -~ ,  and after algebraic mani- 
pulation of  the terms involving o" t and o-e, we have 

1"0-210-2"~n n/2--1 ( 

= l c 2-'(n - m - 2 ) ,  

x ( l + ~ ) t + m r  ° 0 - , /  ,j_~ e x p ( - u ) u m d A d }  

2 2 n (ae/at) 
[F(n/2)12(1 + 0-~/0-t2)" 

n/2 I ( 0-2 l + m  

× ~ = o ~ C ~ 2 _ , ( n - m - 2 ) , ( l + ~ 2 t )  m[} .  

Noting that F(n/2) = (n/2 - 1)! when n is even (as in our case), we can 
simplify to 

2 2 n (0- a/0- t ) 
Pth~shold-- (n/2-- 1)!(1 + z 2 

O ' d / O ' t )  

0-2 I + m  
x " / ~ ' ~  (n--~2---m)[ ( l + ~ 2 t )  }.  (C8) 

,,=0 I n ~ 2 -  1 - m ) !  

Equation (C8) indicates that the ideal observer's performance 
is determined by the ratio of  distractor and target noise variances, 

2 2 0-d/o-t, a fact of  which we will take advantage in our derivation of  
an efficiency measure for the task (Appendix E). For the exper- 
iment here, n = 12 (4 vertices with 3 coordinates each), numerical 
simulation of  the 3D/3D ideal gave a threshold ratio correspond- 
ing to 2 2 a 0-d/trt = 1.490 for 75% correct threshold level. We veri- 
fied this result by running QUEST for an ideal which based its 
decisions on the Euclidean distance between stimuli and a prototype, 

ao/0- t = 1.498 after 2000 obtaining a threshold corresponding to 2 2 
trials. 

A P P E N D I X  D 

The Generalized Radial Basis Function (GRBF) Model 

Poggio and Edelman proposed a specific form of  HyperBF model for 
object recognition, termed a generalized radial basis func- 
tion model (GRBF) (Poggio & Girosi, 1990). The model learns 
a mapping from a number of  2D images of  an object to a proto- 
type image of  the object. An image is represented as a vector, 
[xl , Yl , x2, Y2, • • . ,  xN, yN]r, of the 2D coordinates of  N feature points 
in the images. For the example of  wire objects, as used also in Poggio 
and Edelman's paper, the feature points are the projected vertices of  
the wires. The mapping is performed by a three layer network with an 
input layer, a layer of  hidden units, and an output layer. The input 
layer codes the vector representing an input image and the output layer 
codes the output representing the reconstructed prototype vector. 
The hidden layer of  units applies K Gaussian basis functions to the 
input vector producing a K-dimensional vector of  outputs which is 
transformed by a linear weight matrix to produce the reconstructed 
prototype vector. Formally, the system performs the following 
mapping 

K 

O ( S )  = ~ w,G,(II S - T i II, ~ri), ( D I )  
i= l  

where O(S) is the reconstructed prototype, w i is the weight vector 
associated with hidden unit i, and Gi(ll S - T i l l ;  ~ri) is the Gaussian 
basis function associated with hidden unit i. The Gaussian has mean 
vector T i and standard deviation ai. The parameters of  the system, 
weight vectors, the means and standard deviations of  the Gaussian 
basis functions, are adaptively learned when the system is trained to 
associate a set of  training views of an object with a prototype view P. 
The transformation given in (D1) is applied to novel images of objects 
to generate an estimate of  the associated prototype vector. The 
Euclidean distance between this reconstruction and the learned proto- 
type vector, II O(S) - P I[, gives a measure of  goodness of  fit between 
the input image and the learned object. If the distance exceeds some 
threshold, the image is rejected as a candidate view of  the learned 
object. 

In our experiment, direct application of  the GRBF model would 
require that the model simply choose which of  two stimuli result in a 
smaller Euclidean distance between the corresponding reconstructed 
vector and the learned prototype. In our simulations, we set the 
number of  hidden units equal to the number of  images on which 
subjects were trained. Technically, this would only give I 1 hidden 
units; however, we assume subjects do not know the vertex ordering, 
and that they have available all 2D rotations of  the training views. 
The first assumption means we must include stimulus views corre- 
sponding to both possible vertex orderings. The second assumption 
implies that there are potentially an infinite number of  training views. 
We uniformly sample the rotation space finely enough (M samples) 
to achieve maximum performance of  the model (see below), giving 
11 × M training views and K = 11 × M hidden units. In the case that 
the number of  hidden units equals the number of  training views, the 
weight vectors of the GRBF model can all be set to point in the same 
direction as the prototype vector, i.e. w i = GP, where P is the prototype 
vector and c i is a scalar factor. Under these conditions, the selection 
of  the prototype vector plays no role in the performance of the model 
as can be seen by the following expansion of the Euclidean distance 
metric 

II O ( S )  - e 1[ = ~ w,G,(ll  S - T i II; 0-3 - e 
i = l  

= ~=,~ c~PGi(I[S-TiU;O-i) -P 

(f ) = I IP[I  c,G,(IbS-TAI;0-,)-I  . (D2) 
i I 

That is, the metric applied to each of  two stimulus images will be scaled 
by the same constant lIP I[ and P appears nowhere else in the 
expansion. Even under this constraint, the solution to which par- 
ameters to select for the hidden units' Gaussian basis functions based 
on the set of  training views is an underdetermined problem. We set the 
mean vectors to be equivalent to the training vectors and the standard 
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deviations to be constant  at the standard deviation used for the target 
stimuli. Having fixed the parameters of  the Gaussian basis functions, 
we are left with only the scalar weights c~ to be determined to find 
a unique mapping which takes each of the training views to the 
prototype view. These need not  be learned adaptively, as they are given 
as the solution to the set of  22 x M independent linear equations 

~e~G~(]I S - T, ]1; a,) = 1. (D3) 
i - I  

We note the similarity between this version of  G R B F  and the 2D/2D 
ideal. The difference lies in the fact that the GR B F  model computes 
a weighted sum of  Gaussians  centered on the training views; whereas, 
the ideal computes a straight sum. In the simulations of the G R B F  
model, we computed the e~ independently for each object learned and 
ran the model on the experimental task using QUEST for 2000 trials 
to obtain thresholds. 

We noted that the rotation space was sampled at a fine enough 
density to obtain peak model performance. We ran simulations of  the 
G R B F  model for a range of  sampling densities, from 10 rotations 
(giving a total of  110 training views) to 100 rotations (giving a total 
of  1100 training views). Performance of  the model asymptotes at 
about 40 rotations which is well before the peak sampling of 100 
rotations is reached. For the data shown in the paper, the density of  
I00 rotations was used. 

It should be noted that a HyperBF model is a general mathematical 
technique for function approximation (Poggio & Girosi, 1989). Its 
flexibility and generality makes it useful in a wide range of  applications, 
e.g. in non-parametric statistics. We cannot and do not  intend to argue 
against the general mathematical  method. We simply are comparing 
human  performance on the experimental task with a specific implemen- 
tation of GRBF,  keeping as true to the spirit of  the model presented 
in (Poggio & Girosi, 1990) as possible. The model can be generalized 
quite a bit by allowing different representations for input and output,  
using radial basis functions other than circularly symmetric Gaussians,  
varying the number  of  hidden units, allowing the parameters of  the 
basis functions to be dynamically altered during learning, adding a 
polynomial term to the Gaussians,  and so on. We further simulated the 
model by varying the size of  the standard deviation of  the Gaussian 
functions. This size of  the standard deviation of  all the Gaussians was 
kept the same, and a threshold was obtained with the QUEST 
procedure. By varying the size of  the standard deviations, the 
best threshold value was obtained for each object. No substantial 
improvement of  the model was found, however. 

APPENDIX E 

Efficiency for Object Discrimination 
Efficiency for signal detection and discrimination tasks is often defined 
as the squared ratio of  d ' s  for the ideal and human  observer: 

d ,(n)-" 
E = d ~ D  (El) 

Efficiency defined in this way can often be interpreted as the ratio of  
the number  of  samples required by ideal and human  observers to 
perform a task at a given level of  performance. This interpre- 
tation allows one to discuss the amount  of  information available in a 
stimulus effectively used by human  observers to perform a task. If the 
efficiency is one, then one can say that humans  are using all the 
information available in the stimulus to perform the task. If it is less 
than one, then one can say that human  observers are performing as 
if they were only using a fraction of  the samples available (with the 
fraction given by E).  

An alternative interpretation of E is that it gives the ratio of  the 
variance in the signal noise which the observer "sees" and the signal 
noise which the ideal sees. To understand this, consider the following 
simple detection task. Subjects are asked to detect, in the presence of  

noise, a signal, X. For a given signal strength, x, the ideal observer's 
d '  is given by d '(~) = x/a. The human  observer, when modeled as being 
limited only by the noise of  the stimulus and some independently added 
internal noise, has a d '  which is given by d ' (n )=  x / ~ +  a~, where 

+ a~ is the standard deviation of  the stimulus noise plus the 
internal noise. We therefore have, for the efficiency, 

d,(m: o-2 
E . . . .  (E2) 

d'"}~ a 2+~r~'  

The latter interpretation of efficiency is probably more appropriate 
for the recognition discrimination task we have performed. Since only 
a few sample points define the signal (number of  vertices multiplying 
two (or three)), one can hardly imagine that human observers are 
limited by the number  of  samples they can process in a trial. Intuitively, 
one thinks of  their performance being limited by added uncertainty 
at the positions of the vertices (either in memory or in the signals). 
We would therefore like to define efficiency in the second way described 
above. We will show that efficiency defined in this way for the object 
discrimination task is given by 

AO-{IIZ 

E = (E3) 
AO" (O}2 ~ 

where Aa/l~'~ = a~ 1)~' - al II: is the threshold difference in noise variances 
of  distractor and target stimuli needed for the ideal observer to obtain 
a given percentage correct, and Aa(°)2 = a~ °1~- act °12 is the threshold 
difference needed for human  observers to obtain the same level of  
performance. 

As in the standard analysis of  efficiency, we will treat haman  
observers as being ideal but having internal noise added to the input 
signals (in this case, the position of  the vertices). We have shown in 
Appendix C that the percentage correct for the ideal observer is 
determined by the ratio of  standard deviations of target and distractor 
noise, 

P,hr~hu,d =./'( ~7' ~ , {E4) 
\~rd/ 

where ~r,, is the standard deviation of the target noise and a j is 
the standard deviation of the distractor noise. For a fixed threshold 
percentage correct, we therefore have 

(E5) 
{1)2 (O)2 ÷ O" H ' O" d O" d 

where a ~° -~ and a (°)~ d are the target and distractor noise levels needed 
for a human observer to obtain the same threshold percentage correct 
as the ideal, and a~ is the internal noise added to the vertex positions. 
Noting that the target noise level is held constant  throughout  the 
experiment, altJl" = a}°): = cry, and solving for ~r~, we obtain 

2 (O~2 (I)2 a~(aa -a~l ) 
cr~ = ~ . {E6} a~l!:_ ~; 

For efficiency, we will use the ratio of  the noise variances in the 
distractor stimulus seen by the ideal and the human  observers. We 
choose to compute efficiency using the distractor as the signal, since the 
variance of the target is constant  for ideal and human  observers 

O- {I}2 

E - {E7} 

For al{{}l-~ + a~ ,  we have 

= (E8) 

Substituting into the expression for E, we obtain 

d ' , ~ d  

E ~a~{J}2¢~(°}2wa -c7t~2~ (a~o).' t~) - Aa ~°lz (E9) 

the desired result. 


