
 

Botanical Journal of the Linnean Society

 

, 2006, 

 

150

 

, 79–88. With 15 figures

© 2006 The Linnean Society of London, 

 

Botanical Journal of the Linnean Society, 

 

2006, 

 

150

 

, 79–88

 

79

 

Blackwell Science, LtdOxford, UKBOJ

 

Botanical Journal of the Linnean Society

 

0024-4074The Linnean Society of London, 2006January 2006

 

150

 

?
7988

 

Original Article

 

PLANT-ASSOCIATED BIOFILMS
N. A. FUJISHIGE 
ET AL.
 

 

*Corresponding author. E-mail: ahirsch@ucla.edu

 

Donald Kaplan’s Legacy: Influencing Teaching and Research

 

Guest edited by D. A. DeMason and A. M. Hirsch

 

A feeling for the micro-organism: structure on a small 
scale. Biofilms on plant roots

 

NANCY A. FUJISHIGE

 

1

 

, NEEL N. KAPADIA

 

1

 

 and ANN M. HIRSCH

 

1,2

 

*

 

1

 

Department of Molecular, Cell and Developmental Biology and

 

2

 

Molecular Biology Institute, University of California-Los Angeles, 405 Hilgard Avenue, Los Angeles, CA  
90095-1606, USA

 

Received October 2004; accepted for publication August  2005

 

Biofilms are structured communities of bacterial cells enclosed in a self-produced polymeric matrix and adherent to
an inert or living surface; they have clinical, industrial and environmental impacts. Biofilms that are established by
bacteria on plants are found on the surfaces of roots, leaves, seeds and internal vascular tissues where the microbes
live in commensal, mutualistic or parasitic/pathogenic associations with their host. The study of the structure of
plant-associated biofilms has been considerably helped by the development of techniques using fluorescent markers
coupled with confocal scanning laser microscopy as well as scanning electron microscopy. We review several of these
techniques as well as some of the research that has dealt with plant-associated biofilms. Our investigations focus on
biofilm formation in the early stages of the 

 

Rhizobium

 

–legume symbiosis, in which Gram-negative rhizobia provide
fixed nitrogen to a host legume, and in return, the legume provides carbon-containing molecules. Because root
colonization is an important early step in the establishment of the nitrogen-fixing symbiosis, we looked at 

 

Sino-
rhizobium meliloti

 

 attachment and biofilm establishment on the roots of its legume hosts, 

 

Medicago sativa

 

 L. and

 

Melilotus alba

 

 Desr. We also examined biofilm formation by 

 

Rhizobium leguminosarum

 

 bv. 

 

viciae

 

 on the roots of

 

Arabidopsis thaliana

 

 (L.) Heynh., a non-legume and non-host. Our ultimate goal is to characterize the rhizobial
genes involved in aggregation and attachment to roots because several of these appear to be shared in biofilm for-
mation and rhizobial entry of legume root cells. © 2006 The Linnean Society of London, 

 

Botanical Journal of the
Linnean Society

 

, 2006, 

 

150

 

, 79–88.
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INTRODUCTION

 

Until recently, structural studies of bacteria have been
primarily carried out on the cellular level and typi-
cally on individual or small assemblages of planktonic
bacteria. Transmission electron microscopy (TEM) has
been the method of choice for examination of individ-
ual cells, and scanning electron microscopy (SEM) has
been employed for studying the morphology of small
clusters of bacteria. In the past, few studies focused on
the structure of bacterial populations or on the mor-

phology of the microbial communities established in
nature. However, because of an enhanced interest
in the establishment and organization of bacterial
assemblages as a type of microbial development, more
studies on bacterial population structure are being
performed. In addition, the development of improved
microscopic methods, particularly confocal scanning
laser microscopy (CSLM), as well as the utilization of
fluorescent antibodies, various reporter genes and
fluorescence 

 

in situ

 

 hybridization (FISH) methods
(reviewed by Wagner, Horn & Daims, 2003), have been
responsible for much of the progress in analysing bac-
terial structure on a population scale.
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The amassing of bacteria that results in the coloni-
zation of plant organs and tissues has been described
under multiple names, including aggregates, microcol-
onies, symplasmata and biofilms (see review by Morris
& Monier, 2003). In this report, we will use the term
‘biofilm’, which has been defined as a structured com-
munity of microbial cells consisting of either a single
species or multiple species, adherent to a surface or
interface, and according to the canonical definition
‘encased in an extracellular matrix’ (Costerton &
Stewart, 2001) (Fig. 1). Although typically applied to
microbes that associate with abiotic surfaces, this
term has been used to describe assemblages estab-
lished by 

 

Agrobacterium tumefaciens

 

 on plant organs
(Fuqua & Matthysse, 2001; Ramey 

 

et al

 

., 2004a).
Biofilms significantly impact both medicine and

industry because of their ability to clog heart valves,
catheters and other medical implants, as well as to
foul pipes, anaerobic sludge bed reactors, cooling tow-
ers and ship hulls. Microbial biofilms on surfaces cost
the USA billions of dollars yearly in equipment dam-
age, product contamination, energy losses and medical
infections (see Costerton & Stewart, 2001). Some bio-
film bacteria are resistant to antibiotics, which results
in a compromised host becoming chronically infected
(Costerton, Stewart & Greenberg, 1999). Antibiotic
resistance may result from an alteration of bacterial
metabolism in the biofilm, e.g. such as that caused by
oxygen limitation (Borriello 

 

et al

 

., 2004). Other strat-
egies of survival in response to antibiotic pressure
have also been suggested, including a significant slow
down of bacterial growth (Balaban 

 

et al

 

., 2004).
In nature, especially in aquatic environments, bac-

teria live in the biofilm state (Costerton 

 

et al

 

., 1995),
in contrast to their growth as planktonic organisms in
the laboratory. Unlike laboratory cultures, which usu-

ally grow in a rich medium, many bacterial biofilms
develop in nutrient-poor environments. Most plant-
associated biofilms are found in the phyllosphere or
the rhizosphere, both of which are nutrient-poor. How-
ever, because of the presence of plant cell exudates,
the rhizosphere is relatively nutrient-rich compared
with bulk soil and the phyllosphere. Up to 20% of the
carbon allocated to the root system can be released
into the rhizosphere (Davey & O’Toole, 2000; Knee

 

et al

 

., 2001).
The establishment of a biofilm goes through several

developmental stages. In the first phase of biofilm for-
mation, the bacteria swarm, generally by means of
flagellae, and subsequently absorb reversibly to a sub-
strate (Fig. 1). Within seconds to minutes, the bacteria
become irreversibly attached, often by means of type
IV fimbriae (pili), to the substrate where they estab-
lish a microcolony. While attached, the bacteria divide
and differentiate to form the characteristic three-
dimensional shapes (towers, tufts, ridges or mush-
rooms are frequently used to describe these profiles)
that typify a mature biofilm. Water and nutrients
bathe the bacterial mass. The bacteria are surrounded
by a matrix, which is composed of polysaccharides,
especially exopolysaccharide (EPS), many proteins
and also DNA. Because of its polyhydroxylated nature,
the matrix is very well suited to retain water and help
ameliorate the effects of water stress. Lastly, individ-
ual bacteria can regain their flagella and exit the bio-
film, thereby functioning as dispersal units (Morris &
Monier, 2003).

Quorum sensing (QS) has been shown to play a sig-
nificant role in sensing population density (see review
by Henke & Bassler, 2004), in plant-associated micro-
bial communities (Elasri 

 

et al

 

., 2001; Quinones, Pujol
& Lindow, 2004), and in biofilm formation by both
Gram-negative and Gram-positive bacteria (Davies

 

et al

 

., 1998; Parsek & Greenberg, 1999; Huber 

 

et al

 

.,
2001, 2002; Li 

 

et al

 

., 2002; Lynch 

 

et al

 

., 2002; Merritt

 

et al

 

., 2003; Yarwood 

 

et al

 

., 2004). The use of reporter
gene assays sensitive to QS signals has significantly
helped analyse bacterial population signalling on
plant surfaces (Steidle 

 

et al

 

., 2001). Nevertheless, bio-
films on plant organs have not been as well studied as
medical and industrial biofilms, not only in terms of
QS, but also with respect to other parameters that
affect biofilms. This is changing, however, as more
efforts are being expended to study the colonization of
roots, leaves, seeds and vascular tissues by plant-asso-
ciated bacteria (Ramey 

 

et al

 

., 2004a).
In this report, we will review what is currently

known regarding the morphology of bacterial biofilms
on plants, focusing mostly on roots. Bacteria live as
commensals, pathogens/parasites or mutualists/
symbionts on their hosts, and these categories often
intergrade (Hirsch, 2004). After a brief review of the

 

Figure 1.

 

Stages in biofilm formation. Environmental sig-
nals cue the planktonic cells to settle and establish micro-
colonies on a surface. The mature biofilm is permeated with
water channels, and the cells are covered with exopolymer.
The colonies assume mushroom, ridge or tower shapes or
are configured as streamers. Cells can become motile and
return to the planktonic life style.
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techniques used and the types of biofilms formed by
different life-styled bacteria that are associated with
plants, we will describe our own work on 

 

Rhizobium
leguminosarum

 

 bv. 

 

viciae

 

 and 

 

Sinorhizobium meliloti

 

,
two species of soil microbes that have the ability to
establish nitrogen-fixing nodules on their legume
hosts (Hirsch, 1992).

 

SURFACE COLONIZATION

M

 

UTUALISTS

 

 

 

AND

 

 

 

COMMENSALS

 

Some of the most detailed studies on bacterial com-
munities living on plant organs have been the pioneer-
ing studies of the rhizosphere, the up to 1500-

 

µ

 

m-thick
interface between the root and soil, especially the 50-

 

µ

 

m-thick area next to the root surface (the rhizoplane)
that is rich in carbohydrate-based root exudates and
microbes (Foster, Rovira & Cock, 1983). Many of the
microscopic methods that have been developed to
examine the rhizosphere were employed because of
the difficulties in analysing the microbial community
in association with the root. Bacteria in the rhizo-
sphere are often not very metabolically active, making
them difficult to culture on bacteriological media. PCR
amplification of 16S rDNA helped in the identification
of microbial species, but because many soil microbes
are slow-growing and accumulate few ribosomes (Ass-
mus 

 

et al

 

., 1995), even PCR-based strategies do not
always work. For these reasons, other methods have
been developed such as FISH (oligonucleotide probes
coupled to the use of fluorescent markers) (Assmus

 

et al

 

., 1995; Wagner 

 

et al

 

., 2003).
Besides FISH, some of the earliest methods to visu-

alize microbes in the rhizosphere involved the intro-
duction of 

 

lux

 

 genes and detection by luminescence as
well as immunological approaches using polyclonal or
monoclonal antibodies (see review by Schloter, Assmus
& Hartmann, 1995). The latter methodologies were
significantly aided by CSLM, which allows not only
fluorescence detection but also the reconstruction of
three-dimensional images. Moreover, it is possible to
use different fluorescently labelled markers, exciting
them with specific focused lasers, such that double
or even triple labelling can be achieved. Currently,
the use of reporter gene fusions, particularly genes
expressing green fluorescent protein (GFP) and its
various modifications, has improved the visualization
of colonization patterns of rhizospheric bacteria.

The majority of studies of the structure of rhizo-
spheric biofilms have focused on 

 

Pseudomonas

 

, espe-
cially 

 

P. fluorescens

 

, which is used as a biocontrol
agent, and on 

 

Azospirillum brasilense

 

, a plant growth-
promoting bacterial (PGPB) species. Both groups of
bacteria can be described as mutualists, but they have
also been considered to be commensals.

Using CSLM to visualize highly specific polyclonal
antibody-labelled cells, Hansen 

 

et al

 

. (1997) described
the assemblages of bacteria on roots as irregular
aggregates or ‘strings’ of cells (Figs 2–4). Differentially
labelled 

 

P. fluorescens

 

 strains were detected in young
as well as older tissues of the root. Similarly, Norman-
der, Hendriksen & Nybroe (1999) observed GFP-
tagged bacteria in the crevices of adjacent barley root
epidermal cells and used the term ‘microcolonies’ to
describe their appearance. Using 

 

gusA

 

- and 

 

luxAB

 

-
marked strains, Wang, Wang & Zhou (2004) observed
that 

 

P. fluorescens

 

 strain CS85 cells were not evenly
distributed on cotton roots. When roots were examined
soon after inoculation, the bacteria were first detected
near the root tip or in the root hair zone. Over time,
they became non-uniformly dispersed over the root.
When examined 14 days post-inoculation (dpi), about
two orders of magnitude more bacteria were detected
in the older parts of the root. Bloemberg 

 

et al

 

. (2000),
using three different fluorescent reporters, observed
mixed colonies of 

 

P. fluorescens

 

 on roots. These colo-
nies were generally quite small and were described as
microcolonies by the authors.

 

Azospirillum

 

 forms significantly larger aggregates
on root surfaces than do 

 

Pseudomonas

 

 species (Figs 5,
6). Using FISH, Assmus 

 

et al

 

. (1995) observed large
masses of bacteria mainly in the root hair zone of inoc-
ulated wheat plants. In a later study, using fluores-
cently labelled antibodies and FISH simultaneously,

 

A. brasilense

 

 strain Wa3 was detected in a mixed bac-
terial community on root hairs of roots grown in non-
sterile soil (Assmus 

 

et al

 

., 1997). When inoculated
singly, strains Sp7 or Wa3 were observed to be in tight
clumps on the root hair surface and on the root hairs,
whereas no bacteria were observed on the root tips
(Assmus 

 

et al

 

., 1997).

 

P

 

ARASITES

 

/

 

PATHOGENS

 

Agrobacterium tumefaciens

 

 is a plant pathogen, but
instead of generating a disease that results in necrotic
or wilted plants, it causes transformed galls or hyper-
plasias via virulence functions encoded on a tumour-
inducing plasmid (Gelvin, 2003). On certain hosts,
such as grape, 

 

Agrobacterium

 

 infection can compro-
mise host survival. As yet, no evidence exists for the
importance of biofilm formation as part of the trans-
formation cycle, but studies have demonstrated that
this bacterial species can establish biofilms on abiotic
substrates (Fig. 7) and also on roots (Ramey, Mat-
thysse & Fuqua, 2004b). GFP-labelled wild-type agro-
bacteria attached to PVC were examined by CSLM
and shown to establish small ridges and towers 2–3
cells in thickness within 48 h. After longer time peri-
ods, the agrobacteria were densely packed on the
underlying surface. On roots, a dense covering of bac-
teria was observed (Ramey 

 

et al

 

., 2004b).
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Figures 2–8.

 

Examples of root (2–6) colonization and 

 

in vitro

 

 biofilm formation (7, 8). Figs 2–4. CSLM images of

 

Pseudomonas fluorescens

 

 strains DF57 (red) and Ag1 (green) colonizing 1-day-old barley roots; 2, the bacteria are associated
with a mucilage layer around the root. 3, strings of bacteria between the root epidermal cells. 4, a root hair in the older
part of the root. Reprinted with permission from Hansen 

 

et al

 

. (1997). Early colonization of barley roots by 

 

Pseudomonas
fluorescens

 

 studied by immunofluorescence technique and confocal laser scanning microscopy. 

 

FEMS Microbiology Ecology

 

23:

 

 353–360. Figs 5, 6. CLSM images of 

 

Azospirillum brasilense

 

 Sp245 labelled with a fluorescently labelled oligonucleotide
probe (TRITC-ALF1b), which is complementary to a region of 16S rDNA of alpha proteobacteria. 5, on the root hair of a
soil-grown and 6, root surface of a quartz sand-grown wheat seedling. Reprinted with permission from Assmus 

 

et al

 

. (1995).

 

In situ

 

 localization of 

 

Azospirillum brasilense

 

 in the rhizosphere of wheat with fluorescently labelled, rRNA-targeted
oligonucleotide probes and scanning confocal laser microscopy. 

 

Applied and Environmental Microbiology

 

 

 

61:

 

 1013–1019.
Fig. 7. Biofilm phenotype of a GFP-labelled wild-type 

 

A. tumefaciens

 

 strain C58 incubated in a continuous flow cell system
for 96 h. The top-down view is an overlap of many section planes and the side views are sagittal sections through the
biofilm. Reprinted with permission from Ramey 

 

et al

 

. (2004b). The FNR-type transcription regulator SinR controls
maturation of 

 

Agrobacterium tumefaciens

 

 biofilms. 

 

Molecular Microbiology

 

 

 

52:

 

 1495–1511. Fig. 8. 

 

Xylella fastidiosa

 

 strain
CCT 6752

 

T

 

 (grape) biofilm established on the external surface of wood immersed in culture medium. Reprinted with
permission from Marques 

 

et al

 

. (2002). Characterization of biofilm formation by 

 

Xylella fastidiosa in vitro

 

. 

 

Plant Disease

 

86:

 

 633–638.
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Although plant pathogens such as 

 

Pseudomonas
syringae

 

 establish biofilms in the phyllosphere,
few establish biofilms on roots naturally. The leaf-
associated microbes are usually considered commen-
sals because they are below the population threshold
necessary to elicit a disease (Rouse 

 

et al

 

., 1985). Epi-
phytic bacteria are found in clusters of 1 to >104 cells,
frequently near stomata, trichomes and between epi-
dermal cells, especially near veins (Monier & Lindow,
2004). The fluctuating population numbers most likely
reflect the harsh conditions found on the leaf surface.
For example, desiccation stress decreases bacterial
survivability such that only the cells in aggregates
remain viable, suggesting that small communities are
more resistant to environmental stresses than a single
epiphytic bacterial cell (Monier & Lindow, 2003).

A number of opportunistic human pathogens can
cause disease on plant leaves and roots (Walker et al.,
2004; Jha, Bais & Vivanco, 2005). For example,
Pseudomonas aeruginosa, which frequently colonizes
the lungs of people with cystic fibrosis, has been shown
to establish biofilms on roots of Arabidopsis and sweet
basil (Walker et al., 2004). SEM revealed that the bac-
teria attached both perpendicularly and horizontally
to the roots of each plant species. A phase-bright area,
suggestive of an extracellular matrix, surrounded the
biofilm.

INTERNAL COLONIZATION

PARASITES/PATHOGENS

Only a few plant pathogens have been thoroughly
studied enough to discover whether they establish bio-
films on their plant hosts as part of the disease syn-
drome. Those that do establish biofilms cause disease
by blocking xylem elements, resulting in plant water
loss, severe wilting and subsequent tissue necrosis.
The pathogens include: Xylella fastidiosa, the caus-
ative agent of Pierce’s disease of grapevine and varie-
gated chlorosis of citrus; Clavibacter michigenesis
subsp. sependonicus, which elicits potato ring rot; and
Pantoea stewartii subsp. stewartii, the source of Stew-
art’s wilt disease (Purcell & Hopkins, 1996).

The first studies of Xylella fastidiosa biofilms were
of biofilms established on abiotic surfaces, namely
wood and glass, and used SEM, which, like CSLM,
generates a three-dimensional view of a biofilm. How-
ever, artefacts may arise due to SEM processing,
which includes fixation and dehydration as well as
critical point drying. Each of these steps can lead
to a loss of attached cells and shrinkage of water-
containing components such as exopolysaccharide and
mucigel. Nevertheless, the SEM methodology is very
useful for comparative purposes. Under the same envi-
ronmental conditions, different strains of X. fastidiosa

developed morphologically distinct biofilms: blunt,
consisting of short cells; or filamentous, composed of
elongated cells or filaments of cells (Marques et al.,
2002). Citrus and coffee strains attached poorly to
glass substrates and formed blunt biofilms on wood,
whereas elm and grape X. fastidiosa strains attached
to glass and established filamentous biofilms on wood
(Fig. 8). A polysaccharide matrix was evident on both
types of biofilms (Marques et al., 2002).

As a pathogen, X. fastidiosa clogs the xylem cells of
its hosts, and also lives within the foregut of the insect
host that serves as the vector for the disease (Purcell
& Hopkins, 1996). SEM analyses of the grapevine–
sharpshooter leafhopper–Xylella fastidiosa interac-
tion show a different biofilm phenotype depending on
the host (Newman et al., 2004). In the insect, the bac-
teria are polarly attached to a section of the foregut
via a mat-like structure, which may represent a
matrix. By contrast, in the plant cell, the bacteria are
randomly organized into a mass, which ultimately
occludes the xylem cell. Strands, presumably com-
posed of polysaccharide, extend from the bacteria to
the xylem cell wall (Newman et al., 2004).

SEM analysis showed that a cell-signalling (rfpF)
mutant of X. fastidiosa makes a significantly reduced
biofilm in its insect host compared with wild-type bac-
teria; very few bacterial cells were observed attached
to the insect foregut (Newman et al., 2004). By con-
trast, the biofilms established by mutant and wild-
type bacteria in the plant xylem cell were found to be
very similar to each other, suggesting that the biofilms
established in the two hosts employ different mecha-
nisms of attachment.

MUTUALISTS

Azoarcus strain BH72 was originally isolated as
an endorhizospheric organism from Kallar grass
(Leptochloa fusca (L.) Kunth). Using BH72-specific
antibodies to probe sections of roots in gnotobiotic cul-
ture, this bacterial strain was localized to xylem ves-
sels (Hurek et al., 1994). BH72 also associates with
rice and can colonize both non-living root cortical cells
as well as xylem cells (Hurek & Reinhold-Hurek,
2003). Similar colonization patterns are observed for a
number of endophytic nitrogen fixers, including Glu-
conacetobacter diazotrophicus, Herbaspirillum serope-
dicae and certain Azospirillum strains (Hurek &
Reinhold-Hurek, 2003).

MATERIAL AND METHODS

STRAINS

Rhizobium leguminosarum bv. viciae (Rlv) 128C153
and two wild-type Sinorhizobium meliloti (Sm) strains
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(Rm1021 and RCR2011) were utilized for this study.
Although Rm1021 was derived from RCR2011, the
two strains show some significant differences in the
degree of gumminess as well as other traits (Krol &
Becker, 2004). GFP on the plasmid pHC60 was intro-
duced into Rlv and Sm via a triparental mating using
pRK2013 as a helper plasmid (Figurski & Helinski,
1979). pHC60 is a stable IncP plasmid that con-
stitutively expresses the gfp gene (Cheng & Walker,
1998).

PLANT MATERIAL, INOCULATION, GROWTH, 
AND HARVESTING

Seeds of Medicago sativa L. (alfalfa) and Melilotus
alba Desr. (white sweetclover), the legume hosts for
S. meliloti, were surface-sterilized in 95% ethanol for
10 min and full-strength bleach for 30 min. Seeds
were washed six times with sterile water, and were
germinated in the dark on Whatman paper moistened
with sterile water. The plants were maintained in a
growth chamber at 22 °C with an 18-h light/6-h dark
photoperiod.

To prepare the inoculum, the rhizobial stains were
grown to early stationary phase in Rhizobium Defined
Medium (RDM) (Vincent, 1970) containing tetracy-
cline at 10 µg mL−1. Cells were washed twice and
resuspended in quarter-strength Hoagland’s medium
(Machlis & Torrey, 1956) without nitrogen. The final
concentration of rhizobia was 106 cells mL−1.

Three different methods of growing plant material
for root harvest and inoculating roots with rhizobia
were used. (1) The roots were grown a modified Fahr-
aeus slide assembly (F hraeus, 1957), which consisted
of a slide and a coverslip held together with aquarium
cement. The slide was immersed in a vial containing
filtered Jensen’s medium (Vincent, 1970) that bathed
the root. (2) Three-day-old seedlings were transferred
to square Petri dishes containing agar-solidified quar-
ter-strength Hoagland’s solution without nitrogen and
inoculated 24 h later. (3) One-week-old seedlings were
inoculated by dipping the roots into a Rhizobium sus-
pension of 106 cells mL−1 for 5 min. The seedlings were
then blotted on sterile Whatman paper to remove the
excess liquid, and the plants were grown on What-
man paper wetted with quarter-strength Hoagland’s
medium without nitrogen.

Two days after inoculation, some of the roots were
washed overnight with sterile water containing 0.05%
Tween-20 on a rocking platform shaker to remove
loosely associated cells. The roots were blotted on ster-
ile Whatman paper to remove the excess liquid and
were then weighed. To count the number of attached
rhizobia, the roots were vortexed and homogenized,
and the root homogenate was plated on RDM plates
for colony counting. For each Sm strain tested, we

a.

counted the attachment to at least ten roots. The
experiment was repeated twice.

Seeds of Arabidopsis thaliana (L.) Heynh. (ecotype
Columbia) were sterilized in 50% ethanol for 5 min
and 50% bleach for 15 min. The seeds were washed
three times with sterile water, and then germinated
on Petri dishes containing half-strength solidified
Murashige–Skoog medium. The plants were grown in
a growth chamber at 22 °C with an 18-h light/6-h dark
photoperiod.

To prepare the inoculum for the Arabidopsis roots,
Rlv128C53 (pHC60) was grown to early stationary
phase in TY broth containing 10 µg mL−1 tetracycline.
The cells were washed twice and resuspended in
quarter-strength Hoagland’s complete medium to a
density of 107 cells mL−1. Three-week-old seedlings
were inoculated by dipping the roots into the Rhizo-
bium cell suspension for 5 min. The seedlings were
plated on Whatman paper that had been moistened
with quarter-strength Hoagland’s complete medium
and were returned to the growth chamber. At varying
times after inoculation, the roots were thoroughly
rinsed with fresh quarter-strength Hoagland’s
medium to remove any unattached cells. The experi-
ment was repeated three times.

MICROSCOPY

Confocal images were taken with a Bio-Rad
MRC1024ES (krypton/argon) confocal laser scanning
microscope associated with a Nikon Eclipse E800 light
microscope using settings for fluorescein isothiocyan-
ate (FITC) (488 nm) for observation of the GFP-stained
rhizobia. A Zeiss Axiophot light microscope in conjunc-
tion with fluorescence microscopy was used for obser-
vation of the attachment of GFP-labelled rhizobia.

RESULTS AND DISCUSSION

RHIZOBIA FORM BIOFILMS ON ROOTS

Rhizobia are best known for their ability to induce
nodules on legume roots, an event of considerable
agronomic and ecological importance. Within these
nodules, the rhizobia develop into bacteroids, differ-
entiated forms that fix atmospheric nitrogen into
ammonia, thereby freeing the legume host from its
dependence on exogenous sources of nitrogen (N).

Rhizobia also frequently heavily colonize roots of
both legumes and non-legumes, although generally
rhizobia colonize roots of legume hosts better than
non-legume roots (Schloter et al., 1997). We examined
the attachment of two Sm strains on two of its hosts,
alfalfa and white sweetclover. We found that the Sm
strains heavily colonized the root, especially the root
hair zone. There was extensive colonization of the
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Figures 9–15. Legume roots (9–11) inoculated with Sinorhizobium meliloti strain Rm1021 and Rm1021-GFP. Fig. 9.
Rhizobia (r) aggregate and attach perpendicularly to the deformed root hairs of Medicago sativa. Clusters of more loosely
attached rhizobia (*) are adjacent to the deformed root hairs. Fig. 10. Alfalfa root inoculated with GFP-labelled Rm1021
and viewed 48 hpi under a fluorescent microscope. The red colour is due to the autofluorescence of the root. The large
arrowhead points to a shepherd’s crook and the arrows point to clumps of rhizobia. Fig. 11. Wild-type white sweetclover
root inoculated with GFP-labelled Rm1021 and viewed under a confocal microscope 72 hpi. The arrows point to typical
clumps of cells on the root surface towards the base of the root hair. Figs 12–14. Arabidopsis roots inoculated with GFP-
labelled Rlv128C53. Fig. 12. Clusters of rhizobia are evident in the crevices between epidermal cells (arrow). 72 hpi.
Epifluorescent micrograph. Fig. 13. Rhizobia are also firmly attached to the root hairs at this time (arrow). Epifluorescent
micrograph. Figs 14, 15. Two different Arabidopsis roots 15 dpi were viewed with CSLM. The GFP-labelled rhizobia are
detected on top of most epidermal cells and clustered in the crevices between epidermal cells (arrows). They are also
associated with root hairs (large arrowhead).

9

11

13 14 15

12

10
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shepherd’s crook, a characteristic type of root hair
deformation, which is frequently apparent as early as
24 h post-inoculation (hpi) and is elicited by a compat-
ible rhizobial strain  (Figs 9–11). After thorough wash-
ing, the rhizobia remained firmly attached to the root
surface, to the root hairs and to the detached root cap
cells known as border cells (Hawes et al., 1998). Often,
the rhizobia clustered in discrete clumps on the root
surface (arrows, Figs 10, 11) or were closely associated
with root hairs. Because these roots were harvested
48–72 hpi, nodules were not yet apparent.

White sweetclover roots were harvested and macer-
ated for colony counts as described in the Material and
Methods. For strain Rm1021, 5650 ± 187 rhizobia cells
per 2.76 ± 0.47 mg root fresh weight were attached to
the root. A similar number, 5799 ± 231 of RCR2011
cells per 2.70 ± 0.68 mg of root fresh weight, were
attached.

We next monitored rhizobial biofilm formation on
the roots of a non-legume, Arabidopsis. We chose
Rlv128C53 for these studies because Sm strain
Rm1021 did not attach to Arabidopsis roots in
repeated trials. By contrast, by 72 hpi, Rlv attached to
Arabidopsis roots, with the strongest contact in the
crevices between the epidermal cells and on the root
hairs (Figs 12, 13). This type of attachment is very
similar to that described earlier for Pseudomonas and
Azospirillum species on roots (cf. Figs 2–6 with
Figs 12–15). By 15 dpi, a similar number of Rlv cells
appeared to be associated with the Arabidopsis roots,
but those that were attached were found mostly in the
root hair zone, again clustered on root hairs and espe-
cially on and in between root epidermal cells (Figs 14,
15). These micrographs clearly show that Rlv cells
associated with Arabidopsis roots as a biofilm.

Several studies have shown that rhizobia can colo-
nize the outer surface of non-legume roots. Reddy
et al. (1997) reported that a number of rhizobial
strains attach to rice roots, and a few strains, partic-
ularly Azorhizobium caulinodans ORS571, are able to
invade the crevices surrounding the emerging lateral
roots. Our results differ from those of Yanni et al.
(1997), who found that R. leguminosarum bv. trifolii
invaded the internal root cells of rice. However, the
R. leguminosarum bv. trifolii strain in the aforemen-
tioned study was isolated from soils in Egypt where
rice has been rotated with berseem clover since antiq-
uity. Our results on Arabidopsis also differ from those
of Stone et al. (2001), who reported internal coloniza-
tion of non-legume roots. We did not detect GFP
fluorescence inside any of the Arabidopsis roots
inoculated with Rlv, using either light or confocal
microscopy whereas Stone et al. (2001) performed
their studies with A. caulinodans ORS571, which
invades its host as well as non-host roots by ‘crack
entry’. This mode of invasion is not as frequent for Rlv

or Sm, which exhibit more stringent modes of host
infection (Hirsch, 1992).

Most researchers working with root association
bacteria do not describe this interaction as a bio-
film. However, O’Toole & Kolter (1998) described
P. fluorescens WCS365 as forming a bona fide biofilm
based on its phenotype on an abiotic surface. Simi-
larly, Hinsa et al. (2003) described a gene, lapA, in
P. fluorescens WCS365, which when disrupted results
in a lack of bacterial adherence to an abiotic surface.
The same gene, when mutated in P. putida, yields bac-
teria that cannot adhere to either biotic (seed) or abi-
otic (quartz sand) surfaces. Some of the concerns as to
whether root-colonizing bacteria establish bona fide
biofilms stems from the uncertainty of whether or
not these bacteria are ‘encased in an extracellular
matrix’. Although the previously mentioned studies on
P. fluorescens or Azospirillum do not refer to the pres-
ence of an exopolymeric matrix on the root-associated
biofilms, Walker et al. (2004) presented data for
P. aeroginosa indicating the presence of EPS on root-
associated biofilms. Moreover, the overlap in genes
important for adherence to abiotic and biotic surfaces
argues strongly that bacterial root colonization is
equivalent to biofilm formation. We are currently test-
ing whether a polysaccharide matrix is present on
rhizobial biofilms formed on legume and non-legume
roots. Preliminary TEM analysis indicates the pres-
ence of fibrillar material around rhizobia attached to
the root surface. Demonstrating that this is composed
of polysaccharide will lend further support to the pro-
posal that root-colonizing bacteria establish a bona
fide biofilm.
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