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Bioinformatic identification of potential autocrine
signaling loops in cancers from gene expression profiles
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Many biological signaling pathways involve autocrine
ligand–receptor loops; misregulation of these signaling loops
can contribute to cancer phenotypes. Here we present an algo-
rithm for detecting such loops from gene expression profiles.
Our method is based on the hypothesis that for some autocrine
pathways, the ligand and receptor are regulated by coupled
mechanisms at the level of transcription, and thus ligand–recep-
tor pairs comprising such a loop should have correlated mRNA
expression. Using our database of experimentally known lig-
and–receptor signaling partners, we found examples of lig-
and–receptor pairs with significantly correlated expression in
five cancer-based gene expression datasets. The correlated lig-
and–receptor pairs we identified are consistent with known
autocrine signaling events in cancer cells. In addition, our algo-
rithm predicts new autocrine signaling loops that can be verified
experimentally. Chemokines were commonly members of these
potential autocrine pathways. Our analysis also revealed lig-
and–receptor pairs with expression patterns that may indicate
cellular mechanisms for preventing autocrine signaling.
Autocrine signaling (production of, and response to, a ligand by
the same cell) is a common mechanism of signal transduction in
normal physiological processes1. The effects of autocrine signal-
ing can also be amplified by paracrine signaling between neigh-
boring homotypic cells1. During tumorigenesis, misregulated
autocrine signaling can result in cancer cells less dependent on
survival and growth factors from surrounding tissues1,2.

Correlated expression of two genes at the mRNA level suggests
that the genes are regulated by a common underlying mechanism
and that their products may function together3–6. As autocrine
signaling relies upon the expression of the appropriate ligand and
receptor by the same cell, we reasoned that for some autocrine
pathways, expression of the ligand and receptor involved would

be coupled at the transcriptional level. We attempted to identify
known and candidate autocrine ligand–receptor loops by sys-
tematically searching gene expression data for ligand–receptor
partners that show correlated expression.

Our algorithm integrates two types of data: experimentally
determined ligand–receptor cognate pairs and measured gene
expression profiles. We first compiled the Database of
Ligand–Receptor Partners (DLRP) from published papers and
reviews. This database includes cytokines, chemokines, and
growth, angiogenesis and developmental factors, and contains
175 protein ligands, 131 protein receptors and 451 experimen-
tally determined ligand-receptor pairings. The contents of DLRP
are available through the Database of Interacting Proteins (DIP;
http://dip.doe-mbi.ucla.edu/)7. For gene expression data, we
gathered five publicly available datasets from primary-source
web sites (Methods)8–12. Each of these datasets contains gene
expression values for thousands of genes in approximately 50
patient cancer samples (Table 1).

A schematic of our approach is shown in Fig. 1. For each lig-
and–receptor pair measured in the expression datasets, we calcu-
lated the Pearson correlation coefficient (r) between the ligand
and receptor expression profiles. We then calculated two proba-
bilities for each correlation coefficient: the probability of obtain-
ing a larger (in absolute value) correlation coefficient by
randomly shuffling one of the expression profiles (Pshuffle), and
the probability of finding any other gene pair within the dataset
with a higher absolute correlation coefficient (Pall pairs). The lig-
and–receptor partners with the most significantly correlated
expression (Pshuffle≤0.002 and Pall pairs≤0.06) in the diffuse large
B-cell lymphoma (DLBCL) and leukemia datasets are shown in
Tables 2 and 3 (for all five datasets, see Web Tables A–E). The
most correlated ligand–receptor pairs show correlation similar to
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Table 1 • Gene expression datasets used in our analysis

Expression Number of Number of Number of Array
profile dataset Sample descriptions and subsets (n*) ligands receptors receptor–ligand pairs type

DLBCL (46)
DLBCL8 surviving (18) non-surviving (22) 45 45 37 cDNA

leukemia9 AML (25) ALL (47) 66 62 68 oligo

breast cancer breast cell lines and
breast10 (62) normal samples (22) 33 38 33 cDNA

cell lines from a panel of
NCI6011 various cancer types (64) 37 49 45 cDNA

colon12 colon cancer (40) colon normal (22) 54 64 66 oligo
*number of patient and cell line samples in each dataset or subset.
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that of gene pairs encoding proteins that are known to function
together, such as ribosomal proteins or protein pairs from the
Database of Interacting Proteins (Web Figs. A and B). Consid-
ered as one group, ligand–receptor cognate pairs tend to have
more correlated gene pairs than do random groups of gene pairs,
but this tendency is not statistically significant.

To assess the usefulness of our approach, we first determined
whether it identified any ligand–receptor partners previously
implicated in autocrine signaling. Of the 37 most significantly
correlated ligand–receptor pairs (Pshuffle≤0.002 and
Pall pairs≤0.06) from all five datasets, eight pairs have previously
been implicated in autocrine signaling in tumor cells (Tables 2
and 3 and Web Tables A–E). For example, the interleukin-10
(IL10) ligand and its receptor (IL10RA) show correlated expres-
sion in the acute myelogenous leukemia (AML) samples
(Pall pairs<0.02; Fig. 2 and Table 3). Previous studies have reported
direct evidence for the involvement of IL10 and IL10RA in
autocrine signaling in many cell types, including monocytes and
leukemia cells13,14. Notably, IL10 and IL10RA are not correlated
in the acute lymphoblastic leukemia (ALL) samples (Fig. 2).

Another example of a previously reported autocrine pathway
identified by our algorithm involves the tumor necrosis factor
(TNF) ligand and its receptors, TNFRSF1A (TNFR1) and
TNFRSF1B (TNFR2). In the lymphoma (DLBCL) dataset, we
separately analyzed samples from patients who did, or did not,

survive their disease beyond four years after diagnosis and stan-
dard chemotherapy regimens8. The subgroup of patients who did
not survive beyond four years showed correlated expression
between TNF and TNFR1, and both subgroups had correlated
expression between TNF and TNFR2 (Table 2). A TNF autocrine
loop contributing to cellular proliferation has previously been
observed in lymphoma cell lines15,16.

The overlap between our results and previous reports of
autocrine signaling supports our premise that for some
ligand–receptor pairs involved in autocrine signaling, the lig-
and–receptor co-function is reflected at the mRNA expression
level. We predict that the remaining correlated ligand–receptor
pairs from our results are also involved in autocrine signaling.

Examination of the ligand–receptor pairs with correlated
expression shows several trends. For one, ligand–receptor pairs
from the CC family of chemokines are significantly over-repre-
sented. We found CC chemokine ligand–receptor pairs with cor-
related expression in the DLBCL, leukemia, breast cancer and
colon datasets (Tables 2 and 3; Web Tables A–C, E). For example,
the CCL4/MIP-1β ligand and its receptor CCR5 show correlated
expression in both the DLBCL (Pall pairs<0.002) and leukemia
(Pall pairs<0.01) datasets (Tables 2 and 3). In the DLBCL and
leukemia datasets, CC chemokine ligand–receptor pairs make up
less than 20% of the ligand–receptor pairs measured but consti-
tute 50% or more of the co-expressed ligand–receptor pairs with
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Fig. 1 Bioinformatic identification of potential autocrine ligand–receptor signaling loops. For each known ligand (L)–receptor (R) pair measured in a particular
gene expression dataset, we determined the correlation coefficient (r) between the L and R expression profiles. L–R pairs with high correlation coefficients are
candidate autocrine signaling mediators in the cancer subtypes that show L–R coexpression.
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Fig. 2 Identification of a previously
reported autocrine signaling loop.
Using the method shown in Fig. 1, we
assessed the potential of the IL10 lig-
and and its receptor, IL10RA, to form
an autocrine loop. Data points repre-
sent individual samples from individu-
als with leukemia. Absolute amounts
of mRNA measured using oligo-based
gene expression arrays are reported
on each axis. Correlation coefficients
(r) are indicated, and the lines show
least-squares linear regression fits to
the data. a, Correlated expression of
IL10 and IL10RA in individuals with
AML (Pall pairs<0.02; Table 3). b, Lack of
correlation between IL10 and IL10RA
expression in individuals with ALL.
Previous reports have shown
autocrine signaling through IL10 and
IL10RA in monocytes.
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Pshuffle≤0.002 and Pall pairs≤0.06. For both of these datasets, the
probability of the observed enrichment occurring by chance is
less than 5%. The CC chemokines CCL2/MCP-1, CCL3/MIP-1α
and CCL4 have previously been shown to function in autocrine
pathways17,18. Our results support previous evidence that
chemokine signaling mechanisms contribute to tumor prolifera-
tion, mobility and invasiveness19,20 and can be used to guide
research in this field.

The abundance of CC chemokine ligand–receptor pairs with cor-
related expression prompted further investigation into potential

biological roles for CC chemokines in these cancer samples.
Chemokines function in chemotaxis to stimulate and guide the
movement of cells; accordingly, chemokine signaling modulates
cellular adhesion21. Exposure of responsive cells to CC chemokines
causes both increased surface expression of β2 integrins and an
increased affinity of β2 integrins for adhesion molecules21–23. We
found that the β2 integrins ITGAX/CD11c and ITGB2/CD18 and
the β5 integrin ITGB5, but not ITGAL/CD11a or other integrins,
were highly expressed when the CC chemokine ligand–receptor
pairs from Table 2 were present in DLBCLs (Fig. 3). These results

Table 2 • Correlated ligand–receptor pairs from the lymphoma (DLBCL) dataset

Correlation coefficient (r) Pshuffle Pall pairs

Ligand Receptor Surviving Nonsurviving All Surviving Nonsurviving All Surviving Nonsurviving All

n=18 n=22 n=46

CCL5a CCR5 0.78 0.75 0.79 0.0018 0.0020 6.8×10–7 0.0012 0.0035 0.00032
(RANTES) 0.45 0.57 0.60 0.070 0.018 0.00012 0.11 0.045 0.0065

CCL5a CCR1 0.45 0.66 0.74 0.063 0.0041 1.6×10–6 0.11 0.015 0.00069
(RANTES) 0.58 0.49 0.61 0.017 0.033 7.5×10–5 0.033 0.098 0.0058

CCL4b

(MIP-1β) CCR1 0.57 0.63 0.68 0.019 0.0058 1.2×10–5 0.037 0.022 0.0019

CCL4c,d

(MIP-1β) CCR5 0.53 0.64 0.68 0.033 0.0088 1.8×10–5 0.055 0.021 0.0019

CCL11b

(eotaxin) CCR5 0.51 0.57 0.59 0.043 0.021 0.00022 0.070 0.044 0.0085

TNFa,d TNFRSF1A –0.13 0.71 0.42 0.60 0.0015 0.0055 0.66 0.0070 0.071
(TNFR1) 0.14 0.69 0.46 0.55 0.0021 0.0021 0.64 0.010 0.048

–0.07 0.64 0.31 0.77 0.0055 0.040 0.82 0.021 0.20

TNFa,d TNFRSF1B 0.46 0.50 0.35 0.070 0.026 0.026 0.11 0.091 0.15
(TNFR2) 0.56 0.58 0.42 0.018 0.010 0.0064 0.043 0.043 0.075

0.39 0.46 0.23 0.10 0.045 0.13 0.18 0.12 0.33

Individuals with DLBCL were divided into two subgroups based on whether they did, or did not, survive their disease beyond 4 years after diagnosis and
chemotherapy8. All results with Pshuffle≤0.002 and Pall pairs≤0.06 are shown (Methods). Results involving TNFRSF1B were also included for comparison to the
TNFRSF1A results. Complete results and sequence identifiers of all genes, for this dataset and others, are available in Supplementary Information. Bold values
indicate the most significant correlation coefficient for each ligand–receptor pair based on Pshuffle. n, number of patient samples in each dataset or subset. aGenes
that were measured either in replicate or using multiple sequence isoforms. bLigands that are poor agonists of or have weak affinity for the indicated receptor26.
CCL11/Eotaxin also binds CCR3, which was not measured in the DLBCL dataset. cLigand–receptor pairs displaying correlated expression in multiple datasets. dLi-
gands previously observed in autocrine loops15–17.

Table 3 • Correlated ligand–receptor pairs from the leukemia (AML/ALL) dataset

Correlation coefficient (r) Pshuffle Pall pairs

Ligand Receptor AML ALL AML/ALL AML ALL AML/ALL AML ALL AML/ALL

n=25 n=47 n=72

CCL2a,b FYc 0.67 0.68 0.70 0.0011 4.4×10–6 3.2×10–9 0.012 0.0058 0.0014
(MCP-1) (DARC) 0.51 0.50 0.54 0.014 0.00065 5.7×10–6 0.073 0.055 0.022

CCL4a,b,d CCR5 0.65 0.63 0.61 0.0029 2.6×10–5 6.6×10–7 0.016 0.013 0.0086
(MIP-1β) 0.38 0.63 0.57 0.078 2.1×10–5 3.3×10–6 0.19 0.011 0.016
CCL4′ 0.44 0.20 0.29 0.031 0.18 0.013 0.13 0.45 0.21

FGF4 FGFR2a 0.53 0.57 0.54 0.010 0.00013 7.0×10–6 0.059 0.027 0.022
0.30 0.45 0.40 0.15 0.0024 0.00079 0.31 0.087 0.092
0.36 0.34 0.26 0.084 0.025 0.031 0.22 0.21 0.27

–0.22 –0.09 –0.17 0.29 0.54 0.16 0.46 0.73 0.47

EFNB1 EPHB4 0.66 0.46 0.51 0.0012 0.0019 1.7×10–5 0.013 0.084 0.032

IL10d,e IL10RA 0.66 0.15 0.48 0.0019 0.30 7.1×10–5 0.013 0.55 0.043

CCL8
(MCP-2) CCR5 0.51 0.47 0.47 0.014 0.0015 7.9×10–5 0.072 0.076 0.048

CCL7c,e

(MCP-3) CCR5 0.01 0.49 0.30 0.98 0.00099 0.012 0.99 0.060 0.21

JAG1e NOTCH4 0.65 0.13 0.34 0.0014 0.38 0.0040 0.016 0.62 0.15

All results with Pshuffle≤0.002 and Pall pairs≤0.06 are shown (Methods; see also Table 2, legend). aGenes that were measured either in replicate or using multiple
sequence isoforms. CCL4′ is an isoform of CCL4 with an 8-nt gap and a 1-nt change. The FGFR2 sequences consist of different splice variants. bLigand–receptor
pairs showing correlated expression in multiple datasets. cFY/DARC is a nonsignaling chemokine receptor, and CCL7/MCP-3 is an antagonist for CCR526. dLigands
previously observed in autocrine loops13,14,17. eAML- or ALL-specific results. n, number of patient samples in each dataset or subset.
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Fig. 3 Correlated expression
of CC chemokines, their
receptors and integrins in
DLBCLs. Note the similar
expression profiles for the
CC chemokine ligand–recep-
tor pairs and a subset of the
β2 integrins: ITGAX/CD11c
and ITGB2/CD18, but not
ITGAL/CD11a. These results
agree with the spectrum of
integrins previously seen to
have induced cell-surface
expression after exposure to
CC chemokines. Each row
shows the expression profile
of a gene across multiple
DLBCL samples, with each
column representing a dif-
ferent sample. Expression
levels are reported as the
ratio of the expression level
of the experimental mRNA
sample relative to a refer-
ence mRNA sample, mea-
sured using cDNA-based
gene expression arrays.
Expression is indicated
according to the color scale
shown, with green indicat-
ing low relative expression
and red indicating high
expression. The scale
extends from ratios of
0.13–8 (–3 to 3 in log base 2
units). We created this fig-
ure using the programs
Cluster and Treeview5. The
genes are grouped in gene families separated by solid lines: CC chemokine ligands (CCLs), CC chemokine receptors (CCRs), β2 integrins (ITGAL/CD11a, ITGAX and
ITGB2), integrin β5 (ITGB5) and intercellular adhesion molecules (ICAMs). We observed similar results in the breast cancer dataset (data not shown).
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agree with the spectrum of integrins previously observed to have
induced cell-surface expression after exposure to the CC
chemokines CCL2, CCL3 and CCL5/RANTES17,22,23. Thus, these
three classes of proteins, CC chemokines, their receptors and β2
integrins, are probably regulated by coupled mechanisms in these
cell types. As integrins have been implicated in both lymphoma
aggressiveness24 and invasiveness19,25, the subset of DLBCLs that
co-express chemokine ligand–receptor pairs and integrins may
show distinct phenotypic characteristics.

In addition to identifying potential autocrine pathways, our
analysis revealed ligand–receptor pairs with expression patterns
that may indicate mechanisms for preventing autocrine signal-
ing. For example, the CCL2 ligand and FY/DARC receptor are
co-expressed in colon samples (Pall pairs<0.003), leukemias
(Pall pairs<0.02) and breast cancers (Pall pairs<0.12; Table 3 and
Web Tables B,C and E). To date, the FY receptor has not been
found to generate intracellular signaling upon ligand binding26,
although CCL2 and other FY-binding chemokines can bind to
other chemokine receptors that do signal. FY thus seems to
modulate chemokine signaling by acting as a chemokine sink
(decoy receptor)27. Our observation that the nonsignaling FY
receptor is co-expressed in cells expressing the CCL2 ligand
may indicate a mechanism for reducing the response of a cell to
its own CCL2 secretion.

We also observed examples of negatively correlated expression
of ligand–receptor pairs, which may reflect an underlying mecha-
nism to prevent autocrine signaling by reducing the level of a
receptor whenever its cognate ligand is produced. The growth fac-
tor neuregulin-1 (NRG1) and its receptor ERBB3/HER3 show neg-
atively correlated expression in multiple cancer types in the NCI60
(Pall pairs<0.03), breast cancer (Pall pairs<0.05) and DLBCL

(Pall pairs<0.1) datasets (Web Tables A, C and D). The predominant
receptor complex for the NRG1 ligand is a heterodimeric receptor
consisting of ERBB3 and ERBB2 (ERBB2 is commonly overex-
pressed in breast cancer through gene amplification)28. Whereas
ERBB3 expression is negatively correlated with NRG1 expression
in these datasets, ERBB2 expression is not correlated either posi-
tively or negatively with NRG1 expression (Web Tables A, C and
D). As ERBB2 and ERBB3 receptors cannot efficiently generate
NRG1-stimulated signaling without forming heterodimeric com-
plexes with each other28, modulation of ERBB3 levels could be suf-
ficient to regulate the sensitivity of a cell to the NRG1 ligand. Thus,
negatively correlated expression of NRG1 and ERBB3 may reflect a
cellular mechanism for preventing an autocrine response to
NRG1. Other examples of negatively correlated ligand–receptor
expression can be found in Web Tables A–E.

One major obstacle to the correct interpretation of gene
expression data from human tumor samples is the potential for
the samples to contain contaminating cells from other tissue
types10. If our findings are due to contamination by other cell
types, this would mean that rather than detecting potential
autocrine loops within the tumors, we are instead detecting
either potential autocrine loops within the contaminating cell
population, or paracrine loops between the tumor cells and the
contaminating cells. Nevertheless, such signaling loops could still
be relevant to the biology of the tumor. For the potential
autocrine or paracrine loops we have identified, gene expression
data from tissue arrays or histology slides could be used to resolve
the cell types expressing the ligand and receptor.

A second limitation of gene expression analysis comes from the
observation that protein and mRNA expression levels for a gene
are not always well correlated29. The results presented here are
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based upon measurements of mRNA expression levels. But
receptors and ligands must be expressed as proteins and either
displayed extracellularly or secreted in order to be functional. In
general, the role of post-transcriptional modulation of receptors
and ligands must also be considered.

Because our method relies on detectable differences in expres-
sion, it may be biased toward identifying ligand–receptor pairs
from gene families that are strongly modulated between cell acti-
vation states or cell types. This may partially explain the abun-
dance of chemokine and cytokine ligand–receptor pairs
identified by our analysis.

We have based our analysis on the observation that coordi-
nated expression suggests co-function4,6. Nevertheless, the can-
didate ligand–receptor pairs identified here must be
experimentally tested to determine if they truly participate in
biologically relevant autocrine signaling loops. Compared with
randomly chosen ligand–receptor cognate pairs, the candidate
ligand–receptor pairs identified here should more often survive
experimental validation of autocrine function.

Rather than predicting which gene products function together,
our method identifies the particular cancer types in which
known ligand–receptor pairs probably function together. A vari-
ation of our approach could also be used to identify candidate
genes as new partners for established, or orphan, ligands and
receptors; for example, by using expression data of previously
uncharacterized genes or ESTs. Our approach could also be used
to search for candidate paracrine signaling pathways between two
different tissue types.

Methods
Gene expression datasets. We obtained the following datasets from the
sources indicated: DLBCL dataset, Lymphoma and Leukemia Molecular
Profiling Project (LLMPP), National Cancer Institute (NCI;
http://llmpp.nih.gov/)8; leukemia dataset, Molecular Pattern Recognition,
Whitehead/MIT Center for Genome Research (http://waldo.wi.mit.edu/
MPR/)9; breast dataset, Molecular Portraits, Stanford Microarray Database
(http://genome-www.stanford.edu/)10; NCI60 dataset, NCI60 Cancer
Microarray Project, Stanford Microarray Database (http://genome-
www.stanford.edu/)11; colon dataset, Princeton University Gene Expres-
sion Project (http://microarray.princeton.edu/oncology/)12.

These datasets were generated by gene microarray–based measurements
of mRNA expression of thousands of genes in patient cancer samples, nor-
mal tissue samples and cell lines (Table 1). The DLBCL, breast and NCI60
datasets were acquired using cDNA-based gene expression arrays; the
expression values measured are ratios of an experimental mRNA sample
relative to a reference mRNA sample mixture8. The leukemia and colon
datasets were generated using oligo-based gene expression arrays; the
expression values are absolute measurements of mRNA levels. Because the
datasets were collected using different types of gene expression arrays, with
different sets of genes measured, we analyzed them individually. Genes
with expression levels that were too low to be reliably measured were not
included in the analysis8–12. Each gene expression dataset contains expres-
sion measurements for only a subset of the ligand–receptor pairs in our
Database of Ligand–Receptor Partners (Table 1).

Correlation measure. We measured correlations between gene expression
profiles using the standard Pearson correlation coefficient

where xi and yi represent the amounts of mRNA for the ligand and receptor
in sample i and x− and y− indicate the respective mean expression values5,30.
Before calculating correlation coefficients, we eliminated any expression
measurement of a gene that was more than four s.d. from the mean expres-
sion level of the gene. We determined this cutoff empirically and used it to

eliminate outliers. We also plotted expression comparisons and visually
inspected them for outliers. We calculated correlation measurements of
cDNA-based profiles using log base 2–transformed data, as in the original
papers8,10,11. We also verified that untransformed data yield similar results.

If the patient samples in an expression dataset could be divided into sub-
categories (such as AML and ALL), then for each ligand–receptor pair we
calculated correlation coefficients for each subset and for the set as a whole.
When we observed more than one version of the same gene on a DNA
microarray, we considered each measurement separately and then grouped
them together (Tables 2 and 3 and Web Tables A–E). In general, multiple
measurements of the same gene agreed; when they did not, the difference
could usually be attributed to the use of different isoforms (for instance,
splice variants) of the same genes (for known sequence variants, see Table
3, legend). For both cDNA-based and oligo-based gene expression arrays,
however, the sequence information for the genes used is incomplete. As a
result, some inconsistencies could not be definitively resolved. In addition,
some inconsistencies could be related to the many technical issues involved
in array manufacturing, hybridization and scanning. We include inconsis-
tent results here (Tables 2 and 3 and Web Tables A–E) for their potential
utility in guiding subsequent studies.

Determination of probabilities. We determined the probability of obtain-
ing a larger (in absolute value) correlation at random between genes A and
B (Pshuffle) by randomly shuffling the expression profile of gene A and then
determining the correlation coefficient between the shuffled profile and the
original profile of gene B. We did this 100,000 times; the resulting distribu-
tion was fit to a Gaussian density function. We then determined the proba-
bility of obtaining the observed correlation coefficient between gene A and
B using the complement error function30. This shuffling method preserves
the properties (such as mean, variance and dimensionality) of each expres-
sion profile during the randomization. We also determined the probability
of finding any other pair of genes within the dataset with a higher absolute
correlation coefficient (Pall pairs), and the probability of finding another lig-
and–receptor pair, including those that do not bind each other, with a high-
er absolute correlation coefficient (Pall LR pairs) after calculating the distribu-
tions of all correlation coefficients between all pairs of genes for each set and
subset. There was no significant difference between Pall pairs and Pall LR pairs.

Note: Supplementary information is available on the Nature Genetics
web site (http://genetics.nature.com/supplementary_info/).
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