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Abstract

Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to normal

development and disease processes. Here, we report that EndMTs occur in the diabetic

endothelium of Ins2Akita/wt mouse, and show that induction of sex determining region Y-

box 2 (Sox2) is a mediator of excess BMP signaling that results in activation of EndMTs and

increased vascular calcification. We also find an induction of a complex of serine proteases

in the diabetic endothelium, required for the up-regulation of Sox2. Our results suggest that

EndMTs contribute to vascular calcification in diabetic arteries.

Introduction

Endothelial-mesenchymal transition (EndMT) is a process through which endothelial cells

(ECs) transit into mesenchymal stem cells and gain plasticity for non-EC lineages [1, 2]. Previ-

ous studies have shown that EndMTs occur in organogenesis, such as neural crest formation

and cardiogenesis [3, 4]. In disease, EndMTs have been demonstrated to contribute to the

progress of pulmonary hypertension [5], atherosclerosis [6], cardiac and renal fibrosis [7, 8],

fibrodysplasia ossificans progressive [9], and cancer progression [10]. Recently, our studies

revealed a significant contribution of EndMTs in vascular calcification caused by deficiency of

Matrix Gla protein (MGP), a well-established model of vascular calcification [2, 11, 12]. We

showed that EndMTs drive endothelium to a mesenchymal state and directly contribute cells

to the calcifying process in MGP-deficient aortas. These studies support EndMTs as a novel

mechanism of EC contributing to vascular calcification [13].

Vascular calcification is a common complication of diabetes mellitus, and increases mor-

bidity and mortality in diabetic patients [14]. Several lineages of vascular cells are known to

contribute to diabetic calcification including smooth muscle cells and pericytes [15]. Recently,

we demonstrated the presence of cells with EC-origin in calcified lesions in diabetic aortas by

lineage tracing [14, 16], suggesting that diabetic endothelium not only produces osteoinductive

factors, but directly contributes cells to the calcifying process. The process appears to be driven

by bone morphogenetic proteins (BMPs) induced by high glucose in ECs [2, 11, 14], and is
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limited by enhanced BMP inhibition [16]. However, it is still unclear how the ECs gain plastic-

ity to undergo osteogenesis in the setting of high glucose.

The Ins2Akita/wt mouse is a monogenic diabetic model, and a model of diabetic calcific vas-

culopathy. The Akita mutation disrupts the two disulfide-bonds of A and B chains, which

decreases proinsulin formation and in turn mature insulin [17]. Ins2Akita/wt mice become spon-

taneously diabetic due to the reduced insulin level beginning at 3–4 weeks of age, and has been

used as a model for type I diabetes mellitus (DM1) [18].

To determine if EndMTs play a role in calcific vasculopathy in diabetes mellitus, we investi-

gated the emergence of EndMTs in aortic endothelium of Ins2Akita/wt mice. We demonstrated

that induction of sex determining region Y-box 2 (Sox2) mediated the increased expression

of markers for EndMTs in the diabetic endothelium. Limiting endothelial Sox2 reduced the

expression of these markers as well as aortic calcification. Our results also supported that a

complex of serine proteases was involved in the induction of Sox2. Together, the results sug-

gest that EndMTs contribute to vascular calcification in diabetes mellitus.

Materials and Methods

Animals

Ins2Akita/+ (C57BL/6-Ins2Akita/J), Cdh5Cre (B6.Cg-Tg(Cdh5-cre)7Mlia/J) and Sox2flox/flox

(Sox2tm1.1Lan/J) mice were obtained from the Jackson Laboratory. Genotypes were con-

firmed by PCR [17, 19, 20], and experiments were performed with generations F4-F6. Litter-

mates were used as wild type controls. All mice were fed a standard chow diet (Diet 8604,

HarlanTeklad Laboratory). The studies were reviewed and approved by the Institutional

Review Board and conducted in accordance with the animal care guideline set by the Univer-

sity of California, Los Angeles. All procedures were reviewed and approved by the Animal

Care Committee (ARC) and the UCLA School of Medicine. The investigation conformed to

the National Research Council, Guide for the Care and Use of Laboratory Animals, Eighth Edi-
tion (Washington, DC: The National Academies Press, 2011). Diisopropylfluorophosphate

(DFP) (Sigma-Aldrich) and serpina1 (Origene) were injected via tail vein or retro-orbital

injection (20–50 ng/g, daily) as in previous studies [21, 22]. Injections in Ins2Akita/+ mice

started at 36 weeks of age, and continued for 4 weeks.

The animals were observed once daily during the weeks and once daily on weekends. The

parameters that were assessed include the following: weight loss, breathing difficulties, edema,

hunched posture, restlessness, vocalizing, impaired mobility, failure to groom and unkempt

appearance. The weight was measured and recorded every three days. If the weight decreased

by 5%, we measured the weight daily. If the weight decreased by 10%, we euthanized the

mouse as per approved protocols. None of the mice died or became ill prior to the experimen-

tal endpoints in these studies; 5–30% isoflurane was used for euthanasia of all animals included

in these studies.

Tissue culture and CRISPR/Cas9 genomic editing

Human aortic endothelial cells (HAECs) were cultured as previously described [23]. For treat-

ment of HAECs, BMP-4 (40 ng/ml, R&D system) and glucose (22 nmol/L, Sigma-Aldrich)

were used as before [11]. For MGP-depletion using CRISPR/Cas9 genomic editing, HAECs

were infected by lentiviral vectors, which containing gRNA for exon 1 of the Mgp gene and

Cas9 (Sigma-Aldrich). The infected cells were selected by puromycin. The positive clones were

collected and expanded after 14 days of selection. The depletion of MGP was confirmed by

real-time PCR.
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RNA analysis

Real-time PCR analysis was performed as previously described [24]. Glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH) was used as a control gene [24]. Primers and probes for

mouse MGP, BMP-4, Sox2, Kruppel-like factor 4 (Klf4), snail family zinc finger 2 (Slug or

Snail2), stem cell antigen 1 (Sca1), cluster of differentiation (CD)10, and c-kit (also referred

to as CD117), were obtained from Applied Biosystems as part of Taqman1 Gene Expression

Assays.

Pre-sorting of ECs

The pre-sorting of aortic ECs was performed as previously described [11]. Briefly, the aortas

were perfused with dispase and enzymatically dispersed. Then, the aortas were dissected into

small pieces, and incubated for 45 minutes prior to fixation, staining and FACS analysis.

Immunoblotting

Immunoblotting was performed as previously described [25]. Equal amounts of cellular pro-

tein or tissue lysates were used. Blots were incubated with specific antibodies to elastase 1, kal-

likrein 1 and 6 (all 200 ng/ml; Sigma-Aldrich), elastase 2 (200 ng/ml; Abgent), kallikrein 2 (300

ng/ml; Abgent), kallikrein 5 (300 ng/ml; Acris Antibodies), c-kit (200 ng/ml; Cell Signaling

Technology), Sca1 (200 ng/ml; Merck Millipore), CD10 (1:100; ThermoFisher), CD44, CD90

(both 200 ng/ml; Abcam), CD71 (1:200; ThermoFisher), pSMAD1/5/8, Sox2, Klf4, Slug (all

400 ng/ml; Cell Signaling Technology) or total SMAD (400 ng/ml; Santa Cruz Biotechnology).

ß-Actin (1:5000 dilution; Sigma-Aldrich) was used as loading control.

Chromatin immunoprecipitation (ChIP) assay

For each ChIP assay, approximately 106 cells were crosslinked in 1% formaldehyde for 10 min-

utes at room temperature. Glycine was added to a concentration of 0.125 M to quench the

crosslinking, and the cells were rinsed with ice-cold PBS, resuspended in lysis buffers, and son-

icated to shear the crosslinked DNA to fragments ranging from 200–500 bp. Sonication was

performed on a Misonix 4000 Sonicator with the samples kept in an ice water bath; 1/10-1/20

of the sonicated lysate was saved for input DNA extraction. The lysate was incubated with 1 μg

anti-Sox2 (STEMCELL Technologies) or normal IgG (Abcam) antibodies at 4˚C overnight.

After adding 40 μl protein G magnetic beads, the lysate was further incubated for 2–3 hours.

The beads were washed with washing buffers repeatedly, after which elution buffer was added

and the beads were incubated for 15 minutes at 65˚C. Both the immunoprecipitated and input

DNA samples were incubated overnight at 65˚C for reversal of crosslinking. The DNA samples

were then purified by sequential phenol: chloroform: isoamyl alcohol (Sigma). The final DNA

products were ethanol precipitated and the pellets were air-dried and dissolved in 10 mM

Tris-HCl. The real-time PCR was used to detected Sox2 binding sites around the promoters of

target genes.

Quantification of aortic calcium

Total aortic calcium was measured using a calcium assay kit (Bioassay) as previously described

[26].

Electron microscopy

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were per-

formed as described [11].
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Statistical analysis

Data were analyzed for statistical significance by ANOVA with post hoc Tukey’s analysis. The

analyses were performed using GraphPad Instat1, version 3.0 (GraphPad Software). Data rep-

resent mean ± SD. P<0.05 was considered significant, and experiments were performed a

minimum of three times.

Results and Discussion

EndMTs in aortic endothelium of Ins2Akita/+ mice

We have previously shown that osteogenic cells of endothelial origin contribute to aortic calci-

fication of Ins2Akita/+ mice [11]. To determine whether ECs undergo EndMTs as part of this

process, we examined the aortic endothelium of Ins2Akita/+ mice at 40 weeks of age, when calci-

fied lesions can be detected in the aortas [11, 14]. Using TEM and SEM, we observed that the

internal elastic lamina (IEL), which is in close contact with endothelium, was degraded in the

diabetic aortas (Fig 1a, top). The aortic endothelium was replaced by a mixture of cells, which

appeared to be penetrating into the medial tissues. In addition, SEM showed what appeared to

be ruptures in the diabetic endothelium (Fig 1a, bottom).

To examine whether EndMTs stimulated multipotent characteristics in the Ins2Akita/+ aortic

endothelium, we analyzed the expression of stem cell and mesenchymal markers in isolated

Fig 1. EndMTs in aortic tissue of Ins2Akita/+ mice. (a) Aortic endothelium in Ins2Akita/+ mice was examined

by transmission electron microscopy (TEM) (top) and scanning electron microscopy (SEM) (bottom).

Magnification for TEM, 3.7×103. Magnification for SEM, 5×102. Lu: lumen; IEL: Internal elastic lamina. (b)

Expression of mesenchymal stem cell markers and EC marker VE-cadherin (VE-Cad) in CD31-positive and

CD45-negative presorted cells from wild type (WT) and Ins2Akita/+ aortas at 40 weeks of age, as determined

by immunoblotting.

doi:10.1371/journal.pone.0167936.g001
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aortic ECs by immunoblotting. The EndMT-associated markers Sox2, Klf4, c-kit, Sca1, CD10,

CD44, CD71, CD90 and Slug (also known as Snail2) were strongly induced in aortic ECs

of Ins2Akita/+ mice (Fig 1b), while the expression of the EC marker VE-cadherin showed a

decrease (Fig 1b). Thus, the results suggest that EndMTs cause a transition of the ECs to a mul-

tipotent state, which allows them to contribute cells to the calcifying process [11].

Limiting Sox2 in ECs reduced EndMTs and vascular calcification in

Ins2Akita/+ mice

Our previous studies demonstrated that Sox2 induction plays an essential role in EndMTs [2],

and Sox2 expression is increased in the endothelium of Ins2Akita/+ mice (13). To determine

whether reducing the levels of endothelial Sox2 would limit the induction of EndMT markers

and calcification in Ins2Akita/+ mice, we bred VE-cadherin (Cdh5)Cre and Sox2flox/flox mice with

Ins2Akita/+ mice. VE-cadherin-driven Cre expression was previously shown to reduce Sox2 in

ECs in the Sox2flox/flox mice [2]. We examined the aortic EC of Cdh5CreSox2flox/wtIns2Akita/+

mice at 40 weeks of age, and confirmed that Sox2 expression was significantly decreased (Fig

2a and 2b). The endothelial expression of stem cell and mesenchymal markers was decreased

as shown by real-time PCR and immunoblotting (Fig 2a and 2b). Furthermore, total aortic

Fig 2. Limiting Sox2 in endothelium decreases EndMTs and calcification in Ins2Akita/+ aortas. (a-b)

Decreased expression of Sox2, stem cell and mesenchymal markers in aortas of Cdh5CreSox2Flox/wtIns2Akita/+,

as shown by real-time PCR (a) and immunoblotting (b). VE-cad:VE-cadherin. (c-d) Total aortic calcium and

aortic Alizarin red staining of Cdh5CreSox2wt/wtIns2+/+ and Cdh5CreSox2Flox/wtIns2+/+, Cdh5CreSox2wt/wtIns2Akita/+

and Cdh5CreSox2Flox/wtIns2Akita/+ mice. ***p<0.001.

doi:10.1371/journal.pone.0167936.g002
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calcium and Alizarin red staining suggested significant improvement of aortic calcification in

Cdh5CreSox2flox/wtIns2Akita/+ mice. (Fig 2c and 2d). The results suggest that the Sox2 reduction

limits EndMTs and vascular calcification in diabetic Ins2Akita/+ mice.

Sox2 activates mesenchymal markers in HAECs with excess BMP

activity

In previous studies, we demonstrated the induction of both BMP-4 and its inhibitor MGP

in the endothelium of Ins2Akita/+ mice and glucose-treated human aortic endothelial cells

(HAECs) [14]. We also found that excess BMP-4 as well as depletion of MGP triggered EndMTs

[14]. However, when comparing the induction of BMP-4 and MGP in response to high glucose,

we found a larger relative induction of BMP-4 compared to that of MGP in both the endothe-

lium of Ins2Akita/+ mice and glucose-treated HAECs (Fig 3a and 3b). Even though these are

relative induction levels, it suggests the MGP level is insufficient to counteract the BMP-4 in

hyperglycemic conditions and might explain the Sox2 induction in diabetic conditions.

To confirm that MGP depletion affects Sox2 regulatory activity, as previously reported, we

used CRISPR/Cas9 genomic editing system to deplete >99.5% of MGP RNA in HAECs. MGP

depletion enhanced BMP signaling as determined by immunoblotting for pSMAD1/5/8 (Fig

3c and 3d). Sox2 and c-kit were induced in MGP-depleted HAECs, and Noggin abolished this

induction (Fig 3e), suggesting that excess BMP signaling induce Sox2 to activate EndMTs. We

Fig 3. Sox2 activates CD90 and c-kit in MGP-deficient HAECs. (a-b) Expression of BMP-4 and MGP in

endothelium of Ins2Akita/+ mice (a) and in HAEC (b) treated with different concentrations of glucose. (c-d) MGP

expression and pSMAD1/5/8 level in HAECs after depletion of MGP by using CRISPR/Cas9 (MGP CR). (e)

Expression of Sox2, c-kit and VE-cadherin (VE-cad) in MGP-depleted HAECs (MGP CR) with or without

Noggin treatment. (f) ChIP assay shows abundant Sox2-binding in the promoters of CD90 and c-kit in MGP-

depleted HAECs (MGP CR). a-Sox2: anti-Sox2 antibodies. ***, p<0.0001.

doi:10.1371/journal.pone.0167936.g003
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subsequently performed ChIP assays with enrichment of the DNA by anti-Sox2 antibodies

and examined the Sox2 binding sites in promoter regions of CD90 and c-kit by real-time PCR.

As expected, the results showed abundant Sox2 binding around the regulatory regions of

CD90 and c-kit in MGP-depleted HAECs as compared to controls (Fig 3f). Thus, a reduction

of Sox2 would be expected to limit the reduction of EndMT markers.

Up-regulation of serine proteases in aortic endothelium of Ins2Akita/+ mice

Our previous study demonstrated that a complex of serine proteases, which included elastase

1, 2 and kallikrein 1, 5 and 6, was involved in aortic calcification in MGP-deficient mice [2].

To determine if these proteases were involved in diabetic calcification, we examined expres-

sion in isolated aortic ECs from Ins2Akita/+ mice. The results revealed induction of the same

five serine proteases also in diabetes, as determined by immunoblotting (Fig 4a).

To determine whether the induction of these serine proteases could be limited, we bred the

Ins2Akita/+ mice with Mgptg/wt mice to suppress BMP activity [27], and examined the protease

expression in isolated aortic ECs from Mgptg/wtIns2Akita/+ mice. The result showed a significant

reduction in the expression of elastase 1, 2 and kallikrein 1, 5 and 6, as detected by immuno-

blotting (Fig 4b), suggesting that the induction involves by BMP activation.

Inhibition of serine proteases decreased aortic calcification in Ins2Akita/+

mice

To determine if we could limit calcification in the Ins2Akita/+ mice, we treated Ins2Akita/+ mice

with the serine protease inhibitors DFP and serpina1 for 4 weeks starting at 36 weeks of age.

Fig 4. Induction of elastases and kallikreins in Ins2Akita/+ aortic endothelium. Expression of ELA 1, 2

and KLK 1, 5, 6 in CD31-positive and CD45-negative presorted cells (a) from wild type (WT) and Ins2Akita/+

aortas at 40 weeks of age, and (b) from aortas of WT, Ins2Akita/+, Mgptg/wt and Mgptg/wtIns2Akita/+ mice at 40

weeks of age, as determined by immunoblotting.

doi:10.1371/journal.pone.0167936.g004
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We found that total aortic calcium was significantly reduced after DFP or serpina1 treatment

(Fig 5a and 5b), suggesting that serine protease inhibitors are effective in limiting calcification.

We also analyzed the expression of mesenchymal markers in aortic tissues by immunoblotting,

and found significant decreases in Sox2, c-kit, Slug and CD44 in Ins2Akita/+ aortic ECs after

protease inhibition (Fig 5c). We also found that DFP significantly decreased Sox2 induction

in MGP-depleted HAECs, but have no effect on BMP activity (Fig 5d and 5e). Together, the

results suggest that BMP-induced serine proteases are instrumental in the up-regulation of

Sox2 and EndMTs in diabetes.

This study provides evidence that EndMTs contributes to vascular calcification in diabetic

mice. Our data demonstrate degradation of IEL, loss of normal EC morphology in the aorta,

and expression of mesenchymal stem cell markers. The EndMTs resemble those previously

reported in Mgp-/- mice, which exhibit extensive arterial calcification [2]. Ins2Akita/+ and Mgp-/-

mice share a similar phenotype of arterial medial calcification, which is in part promoted by

excess BMP activity albeit through different mechanisms [11, 14]. In Ins2Akita/+ mice, excess

vascular BMP activity results from induction of BMPs and BMP receptors by high glucose

levels [14], whereas the excess BMP activity in Mgp-/- mice is due to loss of BMP inhibition

provided by MGP [28]. The excess BMP activity appears instrumental in inducing serine pro-

teases that in turn activate Sox2 expression in ECs, and ultimately trigger EndMTs.

Recently, EndMTs have been associated with a number of diabetic complications. They

have been shown to contribute to diabetic cardiomyopathy [29], diabetic nephropathy [30],

diabetes-associated kidney fibrosis [31] and diabetic retinopathy [32] through various signal

pathways. In the diabetic aorta, EndMTs are part of the calcific vasculopathy. We argue that

Fig 5. Inhibition of serine proteases decreases EndMTs and vascular calcification. (a-b) Total aortic

calcium of Ins2Akita/+aortas after treatment of (a) diisopropylfluorophosphate (DFP) or (b) serpina1.

***p<0.001. (c) Expression of stem-cell markers in isolated aortic ECs of Ins2Akita/+ mice after treatment with

diisopropylfluorophosphate (DFP) or serpina1, as determined by immunoblotting. (d-e) pSMAD1/5/8 levels

and Sox2 expression in MGP-depleted HAECs after diisopropylfluorophosphate (DFP) treatment shown by

immunoblotting.

doi:10.1371/journal.pone.0167936.g005
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excess vascular BMP activity contribute to at least two steps in the calcific process. BMP-4 is

known to enhance stem cell characteristics in various stem cells [33] and activate the plasticity

of ECs with the help of proteases and Sox2 [2]. Then, pro-osteogenic BMP2, which is induced

in the diabetic media [14], may drive these cells into the osteogenic lineage with progressive

calcification [34]. BMP regulation of proteases, Sox2 and EndMTs could also be associated

with other diabetic complications, such as diabetic nephropathy, in which BMP5 has been

associated with the activation of EndMTs [30] and polymorphism of Sox2 has significant gen-

der-specific effects [35].

Activation of serine proteases, such as elastases and kallikreins, has been associated with

vascular diseases. Elastases, a subgroup of serine proteases, break down elastin by cleaving

peptide bonds at specific residues such as alanine, glycine, and valine [36]. Elevated activity of

elastases promotes endothelial migration [37, 38], and is associated with the progression of

pulmonary hypertension [39]. Elastase 2 is highly expressed in atherosclerotic lesions and par-

ticipates in the degradation of elastin, fragments of which may enhance calcification [40–43].

Kallikreins, another subgroup of serine proteases, are classified according to biological func-

tion, as tissues kallikreins, which include kallikrein 1 to 15, and plasma kallikrein [44, 45].

Tissue kallikreins are expressed in endothelial cells and play roles in vascular formation and

remodeling [46–48]. They are elevated in diabetes mellitus [49], and promote endothelial inva-

sion in diabetic neovascularization [50–52]. Aortic levels were not documented in these stud-

ies. Our results support that complexes of elastases and kallikreins are intimately involved in

the alteration of EC fate. However, the specific mechanism of these five proteases is not under-

stood at this time, but may be related to activation of specific receptors or other key proteins in

endothelial lineage differentiation.

Conclusions

We show that BMP-induced serine proteases up-regulate Sox2, and Sox2-mediated EndMTs

play a critical role in diabetic vascular calcification. Our results show the importance of

EndMTs in diabetic vascular calcification, a common clinical problem, and provide informa-

tion for developing new treatment strategies.
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